

Graph Transliterator

[image: PyPi Version]
 [https://pypi.python.org/pypi/graphtransliterator][image: Travis status]
 [https://travis-ci.org/seanpue/graphtransliterator][image: Documentation Status]
 [https://graphtransliterator.readthedocs.io/en/latest/?badge=latest][image: PyUp Updates]
 [https://pyup.io/repos/github/seanpue/graphtransliterator/][image: Code Style: Black]
 [https://github.com/ambv/black][image: PyPI - Python Version][image: Software repository DOI]
 [https://doi.org/10.5281/zenodo.3558365][image: Paper DOI]
 [https://doi.org/10.21105/joss.01717]A graph-based transliteration tool that lets you convert the symbols of one
language or script to those of another using rules that you define.

	Free software: MIT license

	Documentation: https://graphtransliterator.readthedocs.io

	Repository: https://github.com/seanpue/graphtransliterator

Transliteration… What? Why?

Moving text or data from one script or encoding to another is a common problem:

	Many languages are written in multiple scripts, and many people can only read one of
them. Moving between them can be a complex but necessary task in order to make
texts accessible.

	The identification of names and locations, as well as machine translation,
benefit from transliteration.

	Library systems often require metadata be in particular forms of romanization in
addition to the original script.

	Linguists need to move between different methods of phonetic transcription.

	Documents in legacy fonts must now be converted to contemporary Unicode ones.

	Complex-script languages are frequently approached in natural language processing and
in digital humanities research through transliteration, as it provides disambiguating
information about pronunciation, morphological boundaries, and unwritten elements not
present in the original script.

Graph Transliterator abstracts transliteration, offering an “easy reading” method for
developing transliterators that does not require writing a complex program. It also
contains bundled transliterators that are rigorously tested. These can be expanded to
handle many transliteration tasks.

Contributions are very welcome!

Features

	Provides a transliteration tool that can be configured to convert the tokens
of an input string into an output string using:

	user-defined types of input tokens and token classes

	transliteration rules based on:

	a sequence of input tokens

	specific input tokens that precede or follow the token sequence

	classes of input tokens preceding or following specified tokens

	“on match” rules for output to be inserted between transliteration
rules involving particular token classes

	defined rules for whitespace, including its optional consolidation

	Can be setup using:

	an “easy reading” YAML [https://yaml.org] format that lets you
quickly craft settings for the transliteration tool

	a JSON [https://json.org] dump of a transliterator (quicker!)

	“direct” settings, perhaps passed programmatically, using a dictionary

	Automatically orders rules by the number of tokens in a
transliteration rule

	Checks for ambiguity in transliteration rules

	Can provide details about each transliteration rule match

	Allows optional matching of all possible rules in a particular location

	Permits pruning of rules with certain productions

	Validates, as well as serializes to and deserializes from JSON
and Python data types, using accessible
marshmallow [https://marshmallow.readthedocs.io/] schemas

	Provides full support for Unicode, including Unicode character names
in the “easy reading” YAML format

	Constructs and uses a directed tree and performs a best-first search
to find the most specific transliteration rule in a given context

	Includes bundled transliterators that you can add to
hat check for full test coverage of the nodes and edges of the internal graph and any
“on match” rules

	Includes a command-line interface to perform transliteration and other tasks

Sample Code and Graph

from graphtransliterator import GraphTransliterator
GraphTransliterator.from_yaml("""
 tokens:
 h: [consonant]
 i: [vowel]
 " ": [whitespace]
 rules:
 h: \N{LATIN SMALL LETTER TURNED I}
 i: \N{LATIN SMALL LETTER TURNED H}
 <whitespace> i: \N{LATIN CAPITAL LETTER TURNED H}
 (<whitespace> h) i: \N{LATIN SMALL LETTER TURNED H}!
 onmatch_rules:
 - <whitespace> + <consonant>: ¡
 whitespace:
 default: " "
 consolidate: true
 token_class: whitespace
 metadata:
 title: "Upside Down Greeting Transliterator"
 version: "1.0.0"
""").transliterate("hi")

'¡ᴉɥ!'

[image: sample graph]

Sample directed tree created by Graph Transliterator. The rule nodes are in double
circles, and token nodes are single circles. The numbers are the cost of the
particular edge, and less costly edges are searched first. Previous token classes
and previous tokens that must be present are found as constraints on the edges
incident to the terminal leaf rule nodes.

Get It Now

$ pip install -U graphtransliterator

Citation

To cite Graph Transliterator, please use:

Pue, A. Sean (2019). Graph Transliterator: A graph-based transliteration tool.
Journal of Open Source Software, 4(44), 1717, https://doi.org/10.21105/joss.01717

	Installation
	Stable release

	From sources

	Required modules

	Usage
	Overview

	Configuration

	Transliteration and Its Exceptions

	Additional Methods

	Internal Graph

	Bundled Transliterators
	Test Coverage of Bundled Transliterators

	Class Structure and Naming Conventions

	Metadata Requirements

	Command Line Interface
	Dump

	Dump Tests

	Generate Tests

	List Bundled Transliterators

	Make JSON of Bundled Transliterator(s)

	Test

	Transliterate

	Tutorial: Using GraphTransliterator
	Tutorial Overview

	Configuring

	Creating a Transliterator

	Transliterating

	Other Information

	Advanced Tutorial: Bundling a Transliterator
	Git Basics: Fork, Branch, Sync, Commit

	Adding A Transliterator

	Testing the Transliterator

	Pushing Your Transliterator

	Contributing
	Contributor Code of Conduct

	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	API Reference
	Core Classes

	Bundled Transliterators

	Graph Classes

	Rule Classes

	Exceptions

	Schemas

	Credits
	Development Lead

	Contributors

	Acknowledgements

	Kudos

	History
	[Unreleased - Maybe]

	[To do]

	1.2.2 (2021-08-11)

	1.2.1 (2020-10-29)

	1.2.0 (2020-05-13)

	1.1.2 (2020-04-29)

	1.1.1 (2020-04-21)

	1.1.0 (2020-01-10)

	1.0.7 (2019-12-22)

	1.0.6 (2019-12-15)

	1.0.5 (2019-12-14)

	1.0.4 (2019-11-30)

	1.0.3 (2019-11-30)

	1.0.2 (2019-11-30)

	1.0.1 (2019-11-29)

	1.0.0 (2019-11-26)

	0.4.10 (2019-11-04)

	0.4.9 (2019-11-04)

	0.4.8 (2019-11-04)

	0.4.7 (2019-11-04)

	0.4.6 (2019-11-04)

	0.4.5 (2019-10-31)

	0.4.4 (2019-10-24)

	0.4.3 (2019-10-24)

	0.4.2 (2019-10-24)

	0.4.1 (2019-10-24)

	0.4.0 (2019-10-24)

	0.3.8 (2019-09-18)

	0.3.7 (2019-09-17)

	0.3.6 (2019-09-17)

	0.3.5 (2019-09-15)

	0.3.4 (2019-09-15)

	0.3.3 (2019-09-14)

	0.3.2 (2019-08-30)

	0.3.1 (2019-08-29)

	0.3.0 (2019-08-23)

	0.2.14 (2019-08-15)

	0.2.13 (2019-08-03)

	0.2.12 (2019-08-03)

	0.2.11 (2019-08-03)

	0.2.10 (2019-08-03)

	0.2.9 (2019-08-03)

	0.2.8 (2019-07-30)

	0.2.7 (2019-07-28)

	0.2.6 (2019-07-28)

	0.2.5 (2019-07-24)

	0.2.4 (2019-07-23)

	0.2.3 (2019-07-23)

	0.2.2 (2019-07-23)

	0.2.1 (2019-07-23)

	0.2.0 (2019-07-23)

	0.1.1 (2019-05-30)

	0.1.0 (2019-05-30)

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install Graph Transliterator, run this command in your terminal:

$ pip install graphtransliterator

This is the preferred method to install Graph Transliterator, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Graph Transliterator can be downloaded from the Github repo [https://github.com/seanpue/graphtransliterator].

You can either clone the public repository:

$ git clone git://github.com/seanpue/graphtransliterator

Or download the tarball [https://github.com/seanpue/graphtransliterator/tarball/master]:

$ curl -OL https://github.com/seanpue/graphtransliterator/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Required modules

Graph Transliterator requires three Python modules, click [https://pypi.org/project/click/], marshmallow [https://pypi.org/project/marshmallow/] and
pyyaml [https://pypi.org/project/PyYAML/]. These modules will be installed automatically using the methods described
above.

Usage

To use Graph Transliterator in a project:

1from graphtransliterator import GraphTransliterator

Overview

Graph Transliterator requires that you first configure a GraphTransliterator.
Then you can transliterate an input string using transliterate(). There are a few
additional methods that can be used to extract information for specific use cases, such
as details about which rules were matched.

Configuration

Graph Transliterator takes the following parameters:

	The acceptable types of tokens in the input string as well as any
associated token classes.

	The transliteration rules for the transformation of the input string.

	Rules for dealing with whitespace.

	“On match” rules for strings to be inserted in particular contexts
right before a transliteration rule’s output is added (optional).

	Metadata settings for the transliterator (optional).

Initialization

Defining the rules for transliteration can be difficult, especially when dealing with
complex scripts. That is why Graph Transliterator uses an “easy reading” format that
allows you to enter the transliteration rules in the popular YAML [https://yaml.org/]
format, either from a string (using from_yaml()) or by reading
from a file or stream (GraphTransliterator.from_yaml_file()). You can also
initialize from the loaded contents of YAML
(GraphTransliterator.from_easyreading_dict()).

Here is a quick sample that parameterizes GraphTransliterator using an easy
reading YAML string (with comments):

 2yaml_ = """
 3 tokens:
 4 a: [vowel] # type of token ("a") and its class (vowel)
 5 bb: [consonant, b_class] # type of token ("bb") and its classes (consonant, b_class)
 6 ' ': [wb] # type of token (" ") and its class ("wb", for wordbreak)
 7 rules:
 8 a: A # transliterate "a" to "A"
 9 bb: B # transliterate "bb" to "B"
10 a a: <2AS> # transliterate ("a", "a") to "<2AS>"
11 ' ': ' ' # transliterate ' ' to ' '
12 whitespace:
13 default: " " # default whitespace token
14 consolidate: false # whitespace should not be consolidated
15 token_class: wb # whitespace token class
16"""
17gt_one = GraphTransliterator.from_yaml(yaml_)
18gt_one.transliterate('a')

'A'

19gt_one.transliterate('bb')

'B'

20gt_one.transliterate('aabb')

'<2AS>B'

The example above shows a very simple transliterator that replaces the input token “a”
with “A”, “bb” with “B”, ” ” with ” “, and two “a” in a row with “<2AS>”. It does not
consolidate whitespace, and treats ” ” as its default whitespace token. Tokens contain
strings of one or more characters.

Input Tokens and Token Class Settings

During transliteration, Graph Transliterator first attempts to convert the input string
into a list of tokens. This is done internally using
GraphTransliterator.tokenize():

21gt_one.tokenize('abba')

[' ', 'a', 'bb', 'a', ' ']

Note that the default whitespace token is added to the start and end of the input
tokens.

Tokens can be more than one character, and longer tokens are matched first:

22yaml_ = """
23 tokens:
24 a: [] # "a" token with no classes
25 aa: [] # "aa" token with no classes
26 ' ': [wb] # " " token and its class ("wb", for wordbreak)
27 rules:
28 aa: <DOUBLE_A> # transliterate "aa" to "<DOUBLE_A>"
29 a: <SINGLE_A> # transliterate "a" to "<SINGLE_A>"
30 whitespace:
31 default: " " # default whitespace token
32 consolidate: false # whitespace should not be consolidated
33 token_class: wb # whitespace token class
34"""
35gt_two = GraphTransliterator.from_yaml(yaml_)
36gt_two.transliterate('a')

'<SINGLE_A>'

37gt_two.transliterate('aa')

'<DOUBLE_A>'

38gt_two.transliterate('aaa')

'<DOUBLE_A><SINGLE_A>'

Here the input “aaa” is transliterated as “<DOUBLE_A><SINGLE_A>”, as the longer token
“aa” is matched before “a”.

Tokens can be assigned zero or more classes. Each class is a string of your choice.
These classes are used in transliteration rules. In YAML they are defined as a
dictionary, but internally the rules are stored as a dictionary of token strings keyed
to a set of token classes. They can be accessed using
GraphTransliterator.tokens:

39gt_two.tokens

{'a': set(), 'aa': set(), ' ': {'wb'}}

Transliteration Rules

Graph Transliterator can handle a variety of transliteration tasks. To do so, it uses
transliteration rules that contain match settings for particular tokens in specific
contexts and also a resulting production, or string to be appended to the output
string.

Match Settings

Transliteration rules contain the following parameters (ordered by where they would
appear in a list of tokens):

	previous token classes : a list of token classes (optional)

	previous tokens : a list of tokens (optional)

	tokens : a list of tokens

	next tokens : a list of tokens (optional)

	next token classes : a list of token classes (optional)

One or more (tokens) must be matched in a particular location. However, specific
tokens can be required before (previous tokens) or behind (next tokens) those
tokens. Additionally, particular token classes can be required before (previous token
classes) and behind (next token classes) all of the specific tokens required
(previous tokens, tokens, next tokens).

Depending on their complexity, these match conditions can be entered using the “easy
reading” format in the following ways.

If there are no required lookahead or lookbehind tokens, the rule can be as follows:

rules:
 a a: aa # two tokens (a,a), with production "production_aa"

If, in an addition to tokens, there are specific previous or following tokens that must
be matched, the rule can be entered as:

tokens:
 a: []
 b: []
 c: []
 d: []
rules:
 a (b): a_before_b # matches token 'a' with the next token 'b'
 (c) a: a_after_c # matches token 'a' when the previous token is 'c'
 a (b c): a_before_b_and_c # matches token 'a' when next tokens are 'b' then 'c'
 (d) a (b c): a_after_d_and_before_b,c # matches the token 'a' after 'd' and before 'b' and 'c'

Token class names are indicated between angular brackets (“<classname>”). If preceding
and following tokens are not required but classes are, these can be entered as follows:

tokens:
 a: []
 b: [class_b]
 c: []
 ' ': [wb]
rules:
 c <class_b>: c_after _class_b # match token 'c' before a token of class 'class_b`
 <class_b> a: a_before_class_b # match token 'a' after a token of class `class_b`
 <class_b> a <class_b>: a_between_class_b # match token 'a' between tokens of class 'class_b'

If token classes must precede or follow specific tokens, these can be entered as:

tokens:
 a: []
 b: []
 c: [class_c]
 d: [class_d]
 ' ': [wb]
rules:
 d (b <class_c>): a_before_b_and_class_c # match token 'd' before 'b' and a token of class 'class_c'
 (<class_c> b) a: a_after_b_and_class_c # match token 'a' after 'b' and a token of class 'class_c'
 (<class_c> d) a (b <class_c> <class_d>): x # match 'a' after token of 'class_c' and 'd' and before a token of 'class_c' and of 'class_d'
whitespace:
 default: ' '
 token_class: wb
 consolidate: false

Automatic Ordering of Transliteration Rules

Graph Transliterator automatically orders the transliteration rules based on the number
of tokens required by the rule. It picks the rule requiring the longest match in a
given context. It does so by assigning a cost to each transliteration rule that
decreases depending on the number of tokens required by the rule. More tokens decreases
the cost of a rule causing it to be matched first:

40yaml_ = """
41 tokens:
42 a: []
43 b: []
44 c: [class_of_c]
45 ' ': [wb]
46 rules:
47 a: <<A>>
48 a b: <<AB>>
49 b: <>
50 c: <<C>>
51 ' ': _
52 <class_of_c> a b: <<AB_after_C>>
53 whitespace:
54 default: " "
55 consolidate: false
56 token_class: wb
57"""
58gt_three = GraphTransliterator.from_yaml(yaml_)
59gt_three.transliterate("ab") # should match rule "a b"

'<<AB>>'

60gt_three.transliterate("cab") # should match rules: "c", and "<class_of_c> a b"

'<<C>><<AB_after_C>>'

Internally, Graph Transliterator uses a special TransliterationRule class.
These can be accessed using GraphTransliterator.rules. Rules are sorted by cost,
lowest to highest:

61gt_three.rules

[TransliterationRule(production='<<AB_after_C>>', prev_classes=['class_of_c'], prev_tokens=None, tokens=['a', 'b'], next_tokens=None, next_classes=None, cost=0.32192809488736235),
 TransliterationRule(production='<<AB>>', prev_classes=None, prev_tokens=None, tokens=['a', 'b'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<<A>>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='<>', prev_classes=None, prev_tokens=None, tokens=['b'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='<<C>>', prev_classes=None, prev_tokens=None, tokens=['c'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='_', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

Whitespace Settings

Whitespace is often very important in transliteration tasks, as the form of many letters
may change at the start or end of words, as in the right-to-left Perso-Arabic and
left-to-right Indic scripts. Therefore, Graph Transliterator requires the following
whitespace settings:

	the default whitespace token

	the whitespace token class

	whether or not to consolidate whitespace

A whitespace token and token class must be defined for any Graph Transliterator. A
whitespace character is added temporarily to the start and end of the input tokens
during the transliteration process.

The consolidate option may be useful in particular transliteration tasks. It
replaces any sequential whitespace tokens in the input string with the default
whitespace character. At the start and end of input, it removes any whitespace:

62yaml_ = """
63 tokens:
64 a: []
65 ' ': [wb]
66 rules:
67 <wb> a: _A
68 a <wb>: A_
69 <wb> a <wb>: _A_
70 a: a
71 ' ': ' '
72 whitespace:
73 default: " " # default whitespace token
74 consolidate: true # whitespace should be consolidated
75 token_class: wb # whitespace token class
76"""
77gt = GraphTransliterator.from_yaml(yaml_)
78gt.transliterate('a') # whitespace present at start of string

'_A_'

79gt.transliterate('aa') # whitespace present at start and end of string

'_AA_'

80gt.transliterate(' a') # consolidate removes whitespace at start of string

'_A_'

81gt.transliterate('a ') # consolidate removes whitespace at end of string

'_A_'

Whitespace settings are stored internally as WhitespaceRules and can be
accessed using GraphTransliterator.whitespace:

82gt.whitespace

WhitespaceRules(default=' ', token_class='wb', consolidate=True)

On Match Rules

Graph Transliterator allows strings to be inserted right
before the productions of transliteration rules. These take as parameters:

	a list of previous token classes, preceding the location of the transliteration
rule match

	a list of next token classes, from the index of the transliteration rule match

	a production string to insert

In the easy reading YAML format, the onmatch_rules are a list of dictionaries.
The key consists of the token class names in angular brackets (“<classname>”), and the
previous classes to match are separated from the following classes by a “+”. The
production is the value of the dictionary:

83yaml_ = """
84 tokens:
85 a: [vowel]
86 ' ': [wb]
87 rules:
88 a: A
89 ' ': ' '
90 whitespace:
91 default: " "
92 consolidate: false
93 token_class: wb
94 onmatch_rules:
95 - <vowel> + <vowel>: ',' # add a comma between vowels
96 """
97gt = GraphTransliterator.from_yaml(yaml_)
98gt.transliterate('aa')

'A,A'

On Match rules are stored internally as a OnMatchRule and can be accessed using
GraphTransliterator.onmatch_rules:

99gt.onmatch_rules

[OnMatchRule(prev_classes=['vowel'], next_classes=['vowel'], production=',')]

Metadata

Graph Transliterator allows for the storage of metadata as another input parameter,
metadata. It is a dictionary, and fields can be added to it:

100yaml_ = """
101 tokens:
102 a: []
103 ' ': [wb]
104 rules:
105 a: A
106 ' ': ' '
107 whitespace:
108 default: " "
109 consolidate: false
110 token_class: wb
111 metadata:
112 author: Author McAuthorson
113 version: 0.1.1
114 description: A sample Graph Transliterator
115 """
116gt = GraphTransliterator.from_yaml(yaml_)
117gt.metadata

{'author': 'Author McAuthorson',
 'version': '0.1.1',
 'description': 'A sample Graph Transliterator'}

Unicode Support

Graph Transliterator allows Unicode characters to be specified by name, including in
YAML files, using the format “\N{UNICODE CHARACTER NAME}” or “\u{####}” (where #### is
the hexadecimal character code):

118yaml_ = """
119 tokens:
120 b: []
121 c: []
122 ' ': [wb]
123 rules:
124 b: \N{LATIN CAPITAL LETTER B}
125 c: \u0043 # hexadecimal Unicode character code for 'C'
126 ' ': ' '
127 whitespace:
128 default: " "
129 consolidate: false
130 token_class: wb
131 """
132gt = GraphTransliterator.from_yaml(yaml_)
133gt.transliterate('b')

'B'

134gt.transliterate('c')

'C'

Configuring Directly

In addition to using GraphTansliterator.from_yaml() and
GraphTransliterator.from_yaml_file(), Graph Transliterator can also be configured
and initialized directly using basic Python types passed as dictionary to
GraphTransliterator.from_dict()

135settings = {
136 'tokens': {'a': ['vowel'],
137 ' ': ['wb']},
138 'rules': [
139 {'production': 'A', 'tokens': ['a']},
140 {'production': ' ', 'tokens': [' ']}],
141 'onmatch_rules': [
142 {'prev_classes': ['vowel'],
143 'next_classes': ['vowel'],
144 'production': ','}],
145 'whitespace': {
146 'default': ' ',
147 'consolidate': False,
148 'token_class': 'wb'},
149 'metadata': {
150 'author': 'Author McAuthorson'}
151}
152gt = GraphTransliterator.from_dict(settings)
153gt.transliterate('a')

'A'

This feature can be useful if generating a Graph Transliterator using code as opposed to
a configuration file.

Ambiguity Checking

Graph Transliterator, by default, will check for ambiguity in its transliteration rules.
If two rules of the same cost would match the same string(s) and those strings would not
be matched by a less costly rule, an AmbiguousTransliterationRulesException
occurs. Details of all exceptions will be reported as a logging.warning():

155yaml_ = """
156tokens:
157 a: [class1, class2]
158 b: []
159 ' ': [wb]
160rules:
161 <class1> a: A
162 <class2> a: AA # ambiguous rule
163 <class1> b: BB
164 b <class2>: BB # also ambiguous
165whitespace:
166 default: ' '
167 consolidate: True
168 token_class: wb
169"""
170gt = GraphTransliterator.from_yaml(yaml_)

WARNING:root:The pattern [{'a'}, {'a'}, {'b', 'a', ' '}] can be matched by both:
 <class1> a
 <class2> a

WARNING:root:The pattern [{'a'}, {'b'}, {'a'}] can be matched by both:
 <class1> b
 b <class2>

AmbiguousTransliterationRulesException

The warning shows the set of possible previous tokens, matched tokens, and next tokens
as three sets.

Ambiguity checking is only necessary when using an untested Graph Transliterator. It can
be turned off during initialization. To do so, set the initialization parameter
check_ambiguity to False.

Ambiguity checking can also be done on demand using check_for_ambiguity().

Ambiguity checking is not performed if loading from a serialized GraphTransliterator
using GraphTransliterator.load() or GraphTransliterator.loads().

Setup Validation

Graph Transliterator validates both the “easy reading” configuration and the direct
configuration using the marshmallow library.

Transliteration and Its Exceptions

The main method of Graph Transliterator is
GraphTransliterator.transliterate(). It will return a string:

171GraphTransliterator.from_yaml(
172'''
173tokens:
174 a: []
175 ' ': [wb]
176rules:
177 a: A
178 ' ': '_'
179whitespace:
180 default: ' '
181 consolidate: True
182 token_class: wb
183''').transliterate("a a")

'A_A'

Details of transliteration error exceptions will be logged using
logging.warning().

Unrecognizable Input Token

Unless the GraphTransliterator is initialized with or has the property
ignore_errors set as True [https://docs.python.org/3/library/constants.html#True], GraphTransliterator.transliterate() will
raise UnrecognizableInputTokenException when character(s) in the input string do
not correspond to any defined types of input tokens. In both cases, there will be a
logging.warning():

184from graphtransliterator import GraphTransliterator
185yaml_ = """
186 tokens:
187 a: []
188 ' ': [wb]
189 rules:
190 a: A
191 ' ': ' '
192 whitespace:
193 default: " "
194 consolidate: true
195 token_class: wb
196"""
197GraphTransliterator.from_yaml(yaml_).transliterate("a!a") # ignore_errors=False

WARNING:graphtransliterator:Unrecognizable token ! at pos 1 of a!a

UnrecognizableInputTokenException

198GraphTransliterator.from_yaml(yaml_, ignore_errors=True).transliterate("a!a") # ignore_errors=True

WARNING:graphtransliterator:Unrecognizable token ! at pos 1 of a!a

'AA'

No Matching Transliteration Rule

Another possible error occurs when no transliteration rule can be identified at a
particular index in the index string. In that case, there will be a
logging.warning(). If the parameter ignore_errors is set to True [https://docs.python.org/3/library/constants.html#True],
the token index will be advanced. Otherwise, there will be a
NoMatchingTransliterationRuleException:

199yaml_='''
200 tokens:
201 a: []
202 b: []
203 ' ': [wb]
204 rules:
205 a: A
206 b (a): B
207 whitespace:
208 default: ' '
209 token_class: wb
210 consolidate: False
211'''
212gt = GraphTransliterator.from_yaml(yaml_)
213gt.transliterate("ab")

WARNING:graphtransliterator:No matching transliteration rule at token pos 2 of [' ', 'a', 'b', ' ']

NoMatchingTransliterationRuleException

214gt.ignore_errors = True
215gt.transliterate("ab")

WARNING:graphtransliterator:No matching transliteration rule at token pos 2 of [' ', 'a', 'b', ' ']

'A'

Additional Methods

Graph Transliterator also offers a few additional methods that may be useful for
particular tasks.

Serialization and Deserialization

The settings of a Graph Transliterator can be serialized using
GraphTransliterator.dump(), which returns a dictionary of native Python data
types. A JSON string of the same can be accessed using
GraphTransliterator.dumps(). Validation is not performed during a dump.

By default, GraphTransliterator.dumps() will use compression level 2, which
removes the internal graph and indexes tokens and graph node labels. Compression level 1
also indexes tokens and graph node labels and contains the graph. Compression level 0
is human readable and includes the graph. No information is lost during compression.
Level 2, the default, loads the fastest and also has the smallest file size.

A GraphTransliterator can be loaded from serialized settings, e.g. in an API context,
using GraphTransliterator.load() and from JSON data as
GraphTransliterator.loads(). Because they are intended to be quick, neither method
performs ambiguity checks or strict validation checking by default.

Serialization can be useful if providing an API or making the configured Graph
Transliterator available in other programming languages, e.g. Javascript.

Matching at an Index

The method match_at() is also public. It matches the best transliteration rule at
a particular index, which is the rule that contains the largest number of required
tokens. The method also has the option match_all which, if set, returns all
possible transliteration matches at a particular location:

216gt = GraphTransliterator.from_yaml('''
217 tokens:
218 a: []
219 a a: []
220 ' ': [wb]
221 rules:
222 a: <A>
223 a a: <AA>
224 whitespace:
225 default: ' '
226 consolidate: True
227 token_class: wb
228''')
229tokens = gt.tokenize("aa")
230tokens # whitespace added to ends

[' ', 'a', 'a', ' ']

231gt.match_at(1, tokens) # returns index to rule

0

232gt.rules[gt.match_at(1, tokens)] # actual rule

TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437)

233gt.match_at(1, tokens, match_all=True) # index to rules, with match_all

[0, 1]

234[gt.rules[_] for _ in gt.match_at(1, tokens, match_all=True)] # actual rules, with match_all

[TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

Details of Matches

Each Graph Transliterator has a property last_matched_rules which returns a list
of TransliterationRule of the previously matched transliteration rules:

235gt.transliterate("aaa")

'<AA><A>'

236gt.last_matched_rules

[TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

The particular tokens matched by those rules can be accessed using
last_matched_rule_tokens:

237gt.last_matched_rule_tokens

[['a', 'a'], ['a']]

Pruning of Rules

In particular cases, it may be useful to remove certain transliteration rules from a
more robustly defined Graph Transliterator based on the string output produced by the
rules. That can be done using pruned_of():

238gt.rules

[TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

239gt.pruned_of('<AA>').rules

[TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

240gt.pruned_of(['<A>', '<AA>']).rules

[]

Internal Graph

Graph Transliterator creates a directed tree during its initialization. During calls to
transliterate(), it searches that graph to find the best transliteration match at
a particular index in the tokens of the input string.

DirectedGraph

The tree is an instance of DirectedGraph that can be accessed using
GraphTransliterator.graph. It contains: a list of nodes, each consisting of a
dictionary of attributes; a dictionary of edges keyed between the head and tail of an
edge that contains a dictionary of edge attributes; and finally an edge list.

241gt = GraphTransliterator.from_yaml(
242 """
243 tokens:
244 a: []
245 ' ': [wb]
246 rules:
247 a: b
248 <wb> a: B
249 ' ': ' '
250 whitespace:
251 token_class: wb
252 default: ' '
253 consolidate: false
254 """)
255gt.graph

<graphtransliterator.graphs.DirectedGraph at 0x7f94e640b4b0>

Nodes

The tree has nodes of three types: Start, token, and rule. A single Start node,
the root, is connected to all other nodes. A token node corresponds to a token having
been matched. Finally, rule nodes are leaf nodes (with no outgoing edges) that
correspond to matched transliteration rules:

256gt.graph.node

[{'type': 'Start', 'ordered_children': {'a': [1], ' ': [4]}},
 {'type': 'token', 'token': 'a', 'ordered_children': {'__rules__': [2, 3]}},
 {'type': 'rule', 'rule_key': 0, 'accepting': True, 'ordered_children': {}},
 {'type': 'rule', 'rule_key': 1, 'accepting': True, 'ordered_children': {}},
 {'type': 'token', 'token': ' ', 'ordered_children': {'__rules__': [5]}},
 {'type': 'rule', 'rule_key': 2, 'accepting': True, 'ordered_children': {}}]

Edges

Edges between these nodes may have different constraints in their attributes:

257gt.graph.edge

{0: {1: {'token': 'a', 'cost': 0.4150374992788437},
 4: {'token': ' ', 'cost': 0.5849625007211562}},
 1: {2: {'cost': 0.4150374992788437, 'constraints': {'prev_classes': ['wb']}},
 3: {'cost': 0.5849625007211562}},
 4: {5: {'cost': 0.5849625007211562}}}

Before the token nodes, there is a token constraint on the edge that must be matched
before the transliterator can visit the token node:

258gt.graph.edge[0][1]

{'token': 'a', 'cost': 0.4150374992788437}

On the edges before rules there may be other constraints, such as certain tokens
preceding or following tokens of the corresponding transliteration rule:

259gt.graph.edge[1][2]

{'cost': 0.4150374992788437, 'constraints': {'prev_classes': ['wb']}}

An edge list is also maintained that consists of a tuple of (head, tail):

260gt.graph.edge_list

[(0, 1), (1, 2), (1, 3), (0, 4), (4, 5)]

Search and Preprocessing

Graph Transliterator uses a best-first search, implemented using a stack, that finds the
transliteration with the the lowest cost. The cost function is:

\[\text{cost}(rule) = \log_2{\big(1+\frac{1}{1+\text{count}_\text{of}_ \text{tokens}_ \text{in}(rule)}\big)}\]

It results in a number between 1 and 0 that lessens as more tokens must be matched. Each
edge on the graph has a cost attribute that is set to the lowest cost transliteration
rule following it. When transliterating, Graph Transliterator will try lower cost edges
first and will backtrack if the constraint conditions are not met.

[image: Sample graph]

An example graph created for the simple case of a Graph Transliterator that takes as
input two token types, a and " " (space), and renders " " as " ", and
a as b unless it follows a token of class wb (for wordbreak), in which
case it renders a as B. The rule nodes are in double circles, and token
nodes are single circles. The numbers are the cost of the particular edge, and less
costly edges are searched first. Previous token class (prev_classes) constraints
are found on the edge before the leftmost leaf rule node.

To optimize the search, during initialization an ordered_children dictionary is
added to each non-leaf node. Its values are a list of node indexes sorted by cost
and keyed by the following token:

261gt.graph.node[0]

{'type': 'Start', 'ordered_children': {'a': [1], ' ': [4]}}

Any rule connected to a node is added to each ordered_children. Any rule nodes
immediately following the current node are keyed to __rules__:

262gt.graph.node[1]

{'type': 'token', 'token': 'a', 'ordered_children': {'__rules__': [2, 3]}}

Because of this preprocessing, Graph Transliterator does not need to iterate through all
of the outgoing edges of a node to find the next node to search.

Bundled Transliterators

Note

Python code on this page: bundled.py Jupyter Notebook: bundled.ipynb

Graph Transliterator includes bundled transliterators in a Bundled subclass of
GraphTransliterator that can be used as follows:

1import graphtransliterator.transliterators as transliterators
2example_transliterator = transliterators.Example()
3example_transliterator.transliterate('a')

'A'

To access transliterator classes, use the iterator
transliterators.iter_transliterators():

4bundled_iterator = transliterators.iter_transliterators()
5next(bundled_iterator)

<example.Example at 0x7fbdab6a5f90>

To access the names of transliterator classes, use the iterator
transliterators.iter_names():

6bundled_names_iterator = transliterators.iter_names()
7next(bundled_names_iterator)

'Example'

The actual bundled transliterators are submodules of
graphtransliterator.transliterators, but they are loaded into the namespace
of transliterators:

8from graphtransliterator.transliterators import Example

Each instance of Bundled contains a directory attribute:

 9transliterator = Example()
10transliterator.directory

'/home/docs/checkouts/readthedocs.org/user_builds/graphtransliterator/checkouts/stable/graphtransliterator/transliterators/example'

Each will contain an easy-reading YAML file that you can view:

tokens:
 a: [vowel]
 ' ': [whitespace]
 b: [consonant]
rules:
 a: A
 b: B
 ' ': ' '
 (<consonant> a) b (a <consonant>): "!B!"
onmatch_rules:
 - <vowel> + <vowel>: ","
whitespace:
 consolidate: False
 default: " "
 token_class: whitespace
metadata:
 name: example
 version: 1.0.0
 description: "An Example Bundled Transliterator"
 url: https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample
 author: Author McAuthorson
 author_email: author_mcauthorson@msu.edu
 license: MIT License
 keywords:
 - example
 project_urls:
 Documentation: https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example
 Source: https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example
 Tracker: https://github.com/seanpue/graphtransliterator/issues

There is also a JSON dump of the transliterator for quick loading:

{"graphtransliterator_version":"1.2.0","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},null]}

Test Coverage of Bundled Transliterators

Each bundled transliterators requires rigorous testing: every node and edge, as
well as any onmatch rules, if applicable, must be visited. A separate subclass
CoverageTransliterator of GraphTransliterator is used
during testing.

It logs visits to nodes, edges, and onmatch rules. The tests are found in a subdirectory
of the transliterator named “tests”. They are in a YAML file consisting of a
dictionary keyed from transliteration input to correct output, e.g.:

YAML declaration of tests for bundled Graph Transliterator
These are in the form of a dictionary.
The key is the source text, and the value is the correct transliteration.
' ': ' '
a: A
aa: A,A
babab: BA!B!AB
b: B

Once the tests are completed, Graph Transliterator checks that all components of the
graph and all of the onmatch rules have been visited.

Class Structure and Naming Conventions

Each transliterator must include a class definition in a submodule of
transliterators.

The class name of each transliterator must be unique and follow camel-case conventions,
e.g. SourceToTarget. File and directory names should, if applicable, be lowercased as
source_to_target.

The bundled files should follow this directory structure, where {{source_to_target}} is
the name of the transliterator:

transliterators
├── {{source_to_target}}
| ├── __init__.py
| ├── {{source_to_target}}.json
| ├── {{source_to_target}}.yaml
└── tests
 ├── test_{{source_to_target}}.py
 └── {{source_to_target}}_tests.yaml

The bundled transliterator will:

	include both an easy-reading YAML file {{source_to_target}}.yaml and a
JSON file {{source_to_target}}.json.

	have tests in a YAML format consisting of a dictionary keyed from transliteration to
correct output in {{source_to_target}}_tests.yaml. It must include complete test
coverage of its graph. Every node and edge of the graph must be visited during the
course of the tests, as well as every on-match rule. Each on-match rule must be
utilized during the course of the tests.

	include metadata about the transliterator in its easy-reading YAML file.

	have an optional custom test file test_{{source_to_target.py}}. This is useful
during development.

Metadata Requirements

Each Bundled transliterator can include the following metadata fields. These
fields are a subset of the metadata of setuptools.

	name (str)
	Name of the transliterator, e.g. “source_to_target”.

	version (str, optional)
	Version of the transliterator. Semantic versioning (https://semver.org) is
recommended.

	url (str, optional)
	URL for the transliterator, e.g. github repository.

	author (str, optional)
	Author of the transliterator

	author_email (str, optional)
	E-mail address of the author.

	maintainer (str, optional)
	Name of the maintainer.

	maintainer_email (str, optional)
	E-mail address of the maintainer.

	license (str, optional)
	License of the transliterator. An open-source license is required for inclusion in
this project.

	keywords (list of str, optional)
	List of keywords.

	project_urls (dict of {str: str}, optional)
	Dictionary of project URLS, e.g. Documentation, Source, etc.

Metadata is validated using a BundledMetadataSchema found in
transliterators.schemas.

To browse metadata, you can use iter_transliterators():

11import pprint
12transliterator = next(transliterators.iter_transliterators())
13pprint.pprint(transliterator.metadata)

{'author': 'Author McAuthorson',
 'author_email': 'author_mcauthorson@msu.edu',
 'description': 'An Example Bundled Transliterator',
 'keywords': ['example'],
 'license': 'MIT License',
 'name': 'example',
 'project_urls': {'Documentation': 'https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example',
 'Source': 'https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example',
 'Tracker': 'https://github.com/seanpue/graphtransliterator/issues'},
 'url': 'https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample',
 'version': '1.0.0'}

Command Line Interface

Graph Transliterator has a simple command line interface with six commands:
dump, dump-tests, generate-tests, list-bundled, make-json, test,
and transliterate.

$ graphtransliterator --help

Usage: main [OPTIONS] COMMAND [ARGS]...

Options:
 --version Show the version and exit.
 --help Show this message and exit.

Commands:
 dump Dump transliterator as JSON.
 dump-tests Dump BUNDLED tests.
 generate-tests Generate tests as YAML.
 list-bundled List BUNDLED transliterators.
 make-json Make JSON rules of BUNDLED transliterator(s).
 test Test BUNDLED transliterator.
 transliterate Transliterate INPUT.

Dump

The dump command will output the specified transliterator as JSON:

$ graphtransliterator dump --help

Usage: dump [OPTIONS]

 Dump transliterator as JSON.

Options:
 -f, --from <CHOICE TEXT>... Format (bundled/yaml_file) and source (name or
 filename) of transliterator [required]
 -ca, --check-ambiguity / -nca, --no-check-ambiguity
 Check for ambiguity. [default: no-check-
 ambiguity]
 -cl, --compression-level INTEGER
 Compression level, from 0 to 2 [default: 2]
 --help Show this message and exit.

It require a --from or -f option with two arguments. The first argument
specifies the format of the transliterator (bundled or yaml_file) and the
second a parameter for that format (the name of the bundled transliterator or the name
of a YAML file).

To load a bundled transliterator, used bundled as the first parameter and give its
(class) name, which will be in CamelCase, as the second:

$ graphtransliterator dump --from bundled Example

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},null]}

To load from a YAML file, give yaml_file as the first and the the name of the file as
the second parameter:

$ graphtransliterator dump --from yaml_file ../graphtransliterator/transliterators/example/example.yaml

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},null]}

If you want to check for ambiguity in the transliterator before the dump, use the
--check-ambiguity or -ca option:

$ graphtransliterator dump --from bundled Example --check-ambiguity # human readable

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},null]}

The compression level can of the JSON be specified using the --compression-level or
-cl command. Compression level 0 is human readable; compression level 1 is not human
readable and includes the generated graph; compression level 2 is not human readable
and does not include the graph. Compression level 2, which is the fastest, is the
default. There is no information lost during these compressions:

$ graphtransliterator dump --from bundled Example --compression-level 0 # human readable, with graph

{"tokens": {"a": ["vowel"], " ": ["whitespace"], "b": ["consonant"]}, "rules": [{"production": "!B!", "prev_classes": ["consonant"], "prev_tokens": ["a"], "tokens": ["b"], "next_classes": ["consonant"], "next_tokens": ["a"], "cost": 0.22239242133644802}, {"production": "A", "tokens": ["a"], "cost": 0.5849625007211562}, {"production": "B", "tokens": ["b"], "cost": 0.5849625007211562}, {"production": " ", "tokens": [" "], "cost": 0.5849625007211562}], "whitespace": {"default": " ", "token_class": "whitespace", "consolidate": false}, "onmatch_rules": [{"prev_classes": ["vowel"], "next_classes": ["vowel"], "production": ","}], "metadata": {"name": "example", "version": "1.0.0", "description": "An Example Bundled Transliterator", "url": "https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample", "author": "Author McAuthorson", "author_email": "author_mcauthorson@msu.edu", "license": "MIT License", "keywords": ["example"], "project_urls": {"Documentation": "https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example", "Source": "https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker": "https://github.com/seanpue/graphtransliterator/issues"}}, "ignore_errors": false, "onmatch_rules_lookup": {"a": {"a": [0]}}, "tokens_by_class": {"vowel": ["a"], "whitespace": [" "], "consonant": ["b"]}, "graph": {"node": [{"ordered_children": {"b": [1], "a": [3], " ": [6]}, "type": "Start"}, {"ordered_children": {"__rules__": [2, 5]}, "type": "token", "token": "b"}, {"rule_key": 0, "type": "rule", "accepting": true}, {"ordered_children": {"__rules__": [4]}, "type": "token", "token": "a"}, {"rule_key": 1, "type": "rule", "accepting": true}, {"rule_key": 2, "type": "rule", "accepting": true}, {"ordered_children": {"__rules__": [7]}, "type": "token", "token": " "}, {"rule_key": 3, "type": "rule", "accepting": true}], "edge_list": [[0, 1], [0, 3], [0, 6], [1, 2], [1, 5], [3, 4], [6, 7]], "edge": {"0": {"1": {"token": "b", "cost": 0.22239242133644802}, "3": {"token": "a", "cost": 0.5849625007211562}, "6": {"token": " ", "cost": 0.5849625007211562}}, "1": {"2": {"constraints": {"next_tokens": ["a"], "prev_tokens": ["a"], "prev_classes": ["consonant"], "next_classes": ["consonant"]}, "cost": 0.22239242133644802}, "5": {"cost": 0.5849625007211562}}, "3": {"4": {"cost": 0.5849625007211562}}, "6": {"7": {"cost": 0.5849625007211562}}}}, "tokenizer_pattern": "(b|a|\\)", "graphtransliterator_version": "1.2.2"}

$ graphtransliterator dump --from bundled Example --compression-level 1 # not human readable, with graph

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},[["Start","rule","token"],[[0,0,{"2":[1],"1":[3],"0":[6]}],[2,0,2,{"-1":[2,5]}],[1,1,0],[2,0,1,{"-1":[4]}],[1,1,1],[1,1,2],[2,0,0,{"-1":[7]}],[1,1,3]],{"0":{"1":[0,-5,2],"3":[0,-1,1],"6":[0,-1,0]},"1":{"2":[[[0],[1],[1],[0]],-5,-1],"5":[0,-1,-1]},"3":{"4":[0,-1,-1]},"6":{"7":[0,-1,-1]}}]]}

$ graphtransliterator dump --from bundled Example --compression-level 2 # default; not human readable, no graph

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant","vowel","whitespace"],[" ","a","b"],[[2],[1],[0]],[["!B!",[0],[1],[2],[1],[0],-5],["A",0,0,[1],0,0,-1],["B",0,0,[2],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","whitespace",0],[[[1],[1],","]],{"name":"example","version":"1.0.0","description":"An Example Bundled Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/transliterator/sample","author":"Author McAuthorson","author_email":"author_mcauthorson@msu.edu","license":"MIT License","keywords":["example"],"project_urls":{"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/graphtransliterator/transliterators/example","Source":"https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/transliterators/example","Tracker":"https://github.com/seanpue/graphtransliterator/issues"}},null]}

Dump Tests

The dump-tests command dumps the tests of a bundled transliterator:

$ graphtransliterator dump-tests --help

Usage: dump-tests [OPTIONS] BUNDLED

 Dump BUNDLED tests.

Options:
 -t, --to [json|yaml] Format (json/yaml) in which to dump [default: yaml]
 --help Show this message and exit.

By default, it outputs the original YAML tests file, preserving any comments:

$ graphtransliterator dump-tests Example

YAML declaration of tests for bundled Graph Transliterator
These are in the form of a dictionary.
The key is the source text, and the value is the correct transliteration.
' ': ' '
a: A
aa: A,A
babab: BA!B!AB
b: B

To output as JSON, use the --to or -t flag:

$ graphtransliterator dump-tests --to json Example

{" ": " ", "a": "A", "aa": "A,A", "babab": "BA!B!AB", "b": "B"}

Generate Tests

The generate-tests command generates YAML tests keyed from input to desired output
covering the entire internal graph. This command can be used to view the output of the
transliterator in Unicode. It can also be used to generate starter tests for bundled
transliterators:

$ graphtransliterator generate-tests --help

Usage: generate-tests [OPTIONS]

 Generate tests as YAML.

Options:
 -f, --from <CHOICE TEXT>... Format (bundled/json/json_file/yaml_file) and
 source (name, JSON, or filename) of
 transliterator [required]
 -ca, --check-ambiguity / -nca, --no-check-ambiguity
 Check for ambiguity. [default: no-check-
 ambiguity]
 --help Show this message and exit.

It also require a --from or -f option with two arguments. The first argument
specifies the format of the transliterator (bundled, json, json_file, yaml_file),
and the second a parameter for that format (the name of the bundled transliterator, the
actual JSON, or the name of a YAML file). Ambiguity checking can be turned on using
--check_ambiguity or -ca:

$ graphtransliterator generate-tests --from bundled Example

' ': ' '
a: A
aa: A,A
b: B
babab: BA!B!AB

List Bundled Transliterators

The list-bundled command provides a list of bundled transliterators:

$ graphtransliterator test --help

Make JSON of Bundled Transliterator(s)

The make-json command makes new JSON files of bundled transliterators:

$ graphtransliterator make-json --help

It also allows regular-expression matching using the --reg-ex or -re flag.
Matching starts at the start of the string. This command is for people creating
new bundled transliterators.

Test

The test command tests a bundled transliterator:

$ graphtransliterator test --help

Usage: test [OPTIONS] BUNDLED

 Test BUNDLED transliterator.

Options:
 -ca, --check-ambiguity / -nca, --no-check-ambiguity
 Check for ambiguity. [default: no-check-
 ambiguity]
 --help Show this message and exit.

It can only be used with bundled transliterators, so it only needs the name of the
transliterator as its argument. This feature is useful when developing a transliterator.
You can write the tests first and then begin developing the transliterator:

$ graphtransliterator test Example

True

Transliterate

The transliterate command will transliterate any following arguments:

$ graphtransliterator transliterate --help

Usage: transliterate [OPTIONS] [INPUT]...

 Transliterate INPUT.

Options:
 -f, --from <CHOICE TEXT>... Format (bundled/json/json_file/yaml_file) and
 source (name, JSON, or filename) of
 transliterator [required]
 -t, --to [json|python] Format in which to output [default: python]
 -ca, --check-ambiguity / -nca, --no-check-ambiguity
 Check for ambiguity. [default: no-check-
 ambiguity]
 -ie, -nie, --ignore-errors / --no-ignore-errors
 Ignore errors. [default: no-ignore-errors]
 --help Show this message and exit.

It also requires a --from or -f option with two arguments. The first argument
specifies the format of the transliterator (bundled, json, json_file,
yaml_file), and the second a parameter for that format (the name of the bundled
transliterator, the actual JSON, or the name of a YAML file).

The transliterate command will transliterate every argument that follows. If there is
only one input string, it will return a string:

$ graphtransliterator transliterate --from bundled Example a

A

$ graphtransliterator transliterate -f json_file ../graphtransliterator/transliterators/example/example.json a

A

$ graphtransliterator transliterate -f yaml_file ../graphtransliterator/transliterators/example/example.yaml a

A

Otherwise, it will return a list:

$ graphtransliterator transliterate -f bundled Example a a

['A', 'A']

The transliterate command also an optional --to or -t command that specifies
the output format, a `python string (default) or a json string:

$ graphtransliterator transliterate --from bundled Example a

A

$ graphtransliterator transliterate --from bundled Example --to json a

"A"

$ graphtransliterator transliterate --from bundled Example --to python a a

['A', 'A']

$ graphtransliterator transliterate --from bundled Example --to json a a

["A", "A"]

Tutorial: Using GraphTransliterator

Note

Python code on this page: tutorial.py Jupyter Notebook: tutorial.ipynb

Graph Transliterator is designed to allow you to quickly develop rules for
transliterating between languages and scripts. In this tutorial you will use a
portion of Graph Transliterators features, including its token matching,
class-based matching, and on match rules, using the GraphTransliterator class.

Tutorial Overview

The task for this tutorial will be to design a transliterator
between the ITRANS (Indian languages TRANSliteration) [https://en.wikipedia.org/wiki/ITRANS] encoding for
Devanagari [https://en.wikipedia.org/wiki/Devanagari] (Hindi) and
standard Unicode [https://www.unicode.org]. ITRANS developed as a means to
transliterate Indic-language using the latin alphabet and punctuation marks
before there were Unicode fonts.

The Devanagari alphabet is an abugida (alphasyllabary), where each “syllable”
is a separate symbol. Vowels, except for the default अ (“a”) have a unique
symbol that connects to a consonant. At the start of the words, they have a
unique shape. Consonants in sequence, without intermediary vowels, change
their shape and are joined together. In Unicode, that is accomplished by using
the Virama [https://en.wikipedia.org/wiki/Virama] character.

Graph Transliterator works by first converting the input text into a series
of tokens. In this tutorial you will define the tokens of ITRANS and necessary
token classes that will allow us to generate rules for conversion.

Graph Transliterator allows rule matching by preceding tokens, tokens, and
following tokens. It allows token classes to precede or follow any specific
tokens. For this task, you will use a preceding token class to identify when to
write vowel signs as opposed to full vowel characters.

Graph Transliterator also allows the insertion of strings between matches
involving particular token classes. This transliterator will need to
insert the virama character between transliteration rules ending with
consonants in order to create consonant clusters.

Configuring

Here you will parameterize the Graph Transliterator using its “easy reading”
format, which uses YAML [https://yaml.org]. It maps to a dictionary
containing up to five keys: tokens, rules, onmatch_rules
(optional), whitespace, and metadata (optional).

Token Definitions

Graph Transliterator tokenizes its input before transliterating. The tokens
section will map the input tokens to their token classes. The main class you
will need is one for consonants, so you can use consonant as the class.
Graph Transliterator also requires a dedicated whitespace class, so you can use
whitespace.

Graph Transliterator allows the use of Unicode character names in files using
\N{UNICODE CHARACTER NAME HERE}} notation. You can enter the Unicode
characters using that notation or directly. YAML will also unescape \u####,
where #### is the hexadecimal notation for a character.

Here is a subsection of that definition:

tokens:
 k: [consonant]
 kh: [consonant]
 "\N{LATIN SMALL LETTER N WITH DOT ABOVE}": [consonant]
 a: [vowel]
 aa: [vowel]
 A: [vowel]
 ' ': [wb,whitespace]
 "\t": [wb,whitespace]
 .N: [vowel_sign]

Transliteration Rule Definitions

The rule definitions in Graph Transliterator in “easy reading” format are also
a dictionary where the rules are the key and the production—what should be
outputted by the rule—is the value. For this task, you just need to match
individual tokens and also any preceding token classes:

rules:
 b: \N{DEVANAGARI LETTER B}
 <consonant> A: \N{DEVANAGARI LETTER AA}
 A: \N{DEVANAGARI LETTER AA}

These rules will replace “b” with the devanagari equivalent (ब), and “A” with
with a full letter अा if it is at a start of a word (following a token of class
“wb”, for wordbreak) or otherwise with a vowel sign ा if it is not, presumably
following a consonant. Graph Transliterator automatically sorts rules by how
many tokens are required for them to be matched, and it picks the one with
that requires the most tokens. So the “A” following a consonant would be
matched before an “A” after any other character. Graph Transliterator will also
check for ambiguity in these rules, unless check_ambiguity is set to False.

While not necessary for this tutorial, Graph Transliterator can also
require matching of specific previous or following tokens and also
classes preceding and following those tokens, e.g.

k a r (U M g A <wb>): k,a,r_followed_by_U,M,g,A_and_a_wordbreak
s o (n a): s,o_followed_by_n,a
(<wb> p y) aa r: aa,r_preceded_by_a_wordbreak,p,and_y

Here is a subsection of the rules:

rules:
 "\t": "\t"
 ' ': ' '
 ',': ','
 .D: "\N{DEVANAGARI LETTER DDDHA}"
 <consonant> A: "\N{DEVANAGARI VOWEL SIGN AA}"
 "\N{LATIN SMALL LETTER N WITH DOT ABOVE}": "\N{DEVANAGARI LETTER NGA}"

On Match Rule Definitions

You will want to insert the Virama character between consonants so that they
will join together in Unicode output. To do so, add an “onmatch_rules”
section:

onmatch_rules:
 - <consonant> + <consonant>: "\N{DEVANAGARI SIGN VIRAMA}"

Unlike the tokens and rules, the onmatch rules are ordered. The first rule
matched is applied. In YAML, they consist of a list of dictionaries each with a
single key and value. The value is the production string to be inserted between
matches. The ` + ` represents that space. So in the input string kyA, which
would tokenize as [' ','k','y','A',' '], a virama character would be
inserted when y is matched, as it is of class “consonant” and the previously
matched transliteration rule for “k” ends with a “consonant”.

Whitespace Definitions

The final required setup parameter is for whitespace. These include the
default whitespace token, which is temporarily added before and after the
input tokens; the consolidate option to replace sequential whitespace
characters with a single default whitespace character; and the token_class
of whitespace tokens:

whitespace:
 consolidate: false
 default: ' '
 token_class: whitespace

Metadata Definitions

Graph Transliterator also allows metadata to be added to its settings:

metadata:
 title: "ITRANS Devanagari to Unicode"
 version: "0.1.0"

Creating a Transliterator

Now that the settings are ready, you can create a Graph Transliterator.
Since you have been using the “easy reading” format, you
can use GraphTransliterator.from_yaml_file() to read from a
specific file or the GraphTransliterator.from_yaml() to read from a
YAML string. You read from the loaded contents of an “easy reading”
YAML file using GraphTransliterator.from_dict(). Graph Transliterator
will convert those settings into basic Python types and then return a
GraphTransliterator:

 1from graphtransliterator import GraphTransliterator
 2easyreading_yaml = """
 3tokens:
 4 k: [consonant]
 5 kh: [consonant]
 6 g: [consonant]
 7 gh: [consonant]
 8 ~N: [consonant]
 9 "\N{LATIN SMALL LETTER N WITH DOT ABOVE}": [consonant]
 10 ch: [consonant]
 11 chh: [consonant]
 12 Ch: [consonant]
 13 j: [consonant]
 14 jh: [consonant]
 15 ~n: [consonant]
 16 T: [consonant]
 17 Th: [consonant]
 18 D: [consonant]
 19 Dh: [consonant]
 20 N: [consonant]
 21 t: [consonant]
 22 th: [consonant]
 23 d: [consonant]
 24 dh: [consonant]
 25 n: [consonant]
 26 ^n: [consonant]
 27 p: [consonant]
 28 ph: [consonant]
 29 b: [consonant]
 30 bh: [consonant]
 31 m: [consonant]
 32 y: [consonant]
 33 r: [consonant]
 34 R: [consonant]
 35 l: [consonant]
 36 ld: [consonant]
 37 L: [consonant]
 38 zh: [consonant]
 39 v: [consonant]
 40 sh: [consonant]
 41 Sh: [consonant]
 42 s: [consonant]
 43 h: [consonant]
 44 x: [consonant]
 45 kSh: [consonant]
 46 GY: [consonant]
 47 j~n: [consonant]
 48 dny: [consonant]
 49 q: [consonant]
 50 K: [consonant]
 51 G: [consonant]
 52 J: [consonant]
 53 z: [consonant]
 54 .D: [consonant]
 55 .Dh: [consonant]
 56 f: [consonant]
 57 Y: [consonant]
 58 a: [vowel]
 59 aa: [vowel]
 60 A: [vowel]
 61 i: [vowel]
 62 ii: [vowel]
 63 I: [vowel]
 64 ee: [vowel]
 65 u: [vowel]
 66 uu: [vowel]
 67 U: [vowel]
 68 RRi: [vowel]
 69 R^i: [vowel]
 70 LLi: [vowel]
 71 L^i: [vowel]
 72 RRI: [vowel]
 73 LLI: [vowel]
 74 a.c: [vowel]
 75 ^e: [vowel]
 76 e: [vowel]
 77 ai: [vowel]
 78 A.c: [vowel]
 79 ^o: [vowel]
 80 o: [vowel]
 81 au: [vowel]
 82 ' ': [wb,whitespace]
 83 "\t": [wb,whitespace]
 84 ',': [wb]
 85 .h: [wb]
 86 H: [wb]
 87 OM: [wb]
 88 AUM: [wb]
 89 '|': [wb]
 90 '||': [wb]
 91 '0': [wb]
 92 '1': [wb]
 93 '2': [wb]
 94 '3': [wb]
 95 '4': [wb]
 96 '5': [wb]
 97 '6': [wb]
 98 '7': [wb]
 99 '8': [wb]
100 '9': [wb]
101 Rs.: [wb]
102 ~Rs.: [wb]
103 .a: [wb]
104 a.e: [vowel_sign]
105 .N: [vowel_sign]
106 .n: [vowel_sign]
107 M: [vowel_sign]
108 .m: [vowel_sign]
109rules:
110 "\t": "\t"
111 ' ': ' '
112 ',': ','
113 .D: "\N{DEVANAGARI LETTER DDDHA}"
114 .Dh: "\N{DEVANAGARI LETTER RHA}"
115 .N: "\N{DEVANAGARI SIGN CANDRABINDU}"
116 .a: "\N{DEVANAGARI SIGN AVAGRAHA}"
117 .h: "\N{DEVANAGARI SIGN VIRAMA}\N{ZERO WIDTH NON-JOINER}"
118 .m: "\N{DEVANAGARI SIGN ANUSVARA}"
119 .n: "\N{DEVANAGARI SIGN ANUSVARA}"
120 '0': "\N{DEVANAGARI DIGIT ZERO}"
121 '1': "\N{DEVANAGARI DIGIT ONE}"
122 '2': "\N{DEVANAGARI DIGIT TWO}"
123 '3': "\N{DEVANAGARI DIGIT THREE}"
124 '4': "\N{DEVANAGARI DIGIT FOUR}"
125 '5': "\N{DEVANAGARI DIGIT FIVE}"
126 '6': "\N{DEVANAGARI DIGIT SIX}"
127 '7': "\N{DEVANAGARI DIGIT SEVEN}"
128 '8': "\N{DEVANAGARI DIGIT EIGHT}"
129 '9': "\N{DEVANAGARI DIGIT NINE}"
130 <consonant> A: "\N{DEVANAGARI VOWEL SIGN AA}"
131 <consonant> A.c: "\N{DEVANAGARI VOWEL SIGN CANDRA O}"
132 <consonant> I: "\N{DEVANAGARI VOWEL SIGN II}"
133 <consonant> LLI: "\N{DEVANAGARI VOWEL SIGN VOCALIC LL}"
134 <consonant> LLi: "\N{DEVANAGARI VOWEL SIGN VOCALIC L}"
135 <consonant> L^i: "\N{DEVANAGARI VOWEL SIGN VOCALIC L}"
136 <consonant> RRI: "\N{DEVANAGARI VOWEL SIGN VOCALIC RR}"
137 <consonant> RRi: "\N{DEVANAGARI VOWEL SIGN VOCALIC R}"
138 <consonant> R^i: "\N{DEVANAGARI VOWEL SIGN VOCALIC R}"
139 <consonant> U: "\N{DEVANAGARI VOWEL SIGN UU}"
140 <consonant> ^e: "\N{DEVANAGARI VOWEL SIGN SHORT E}"
141 <consonant> ^o: "\N{DEVANAGARI VOWEL SIGN SHORT O}"
142 <consonant> a: ''
143 <consonant> a.c: "\N{DEVANAGARI VOWEL SIGN CANDRA E}"
144 <consonant> aa: "\N{DEVANAGARI VOWEL SIGN AA}"
145 <consonant> ai: "\N{DEVANAGARI VOWEL SIGN AI}"
146 <consonant> au: "\N{DEVANAGARI VOWEL SIGN AU}"
147 <consonant> e: "\N{DEVANAGARI VOWEL SIGN E}"
148 <consonant> ee: "\N{DEVANAGARI VOWEL SIGN II}"
149 <consonant> i: "\N{DEVANAGARI VOWEL SIGN I}"
150 <consonant> ii: "\N{DEVANAGARI VOWEL SIGN II}"
151 <consonant> o: "\N{DEVANAGARI VOWEL SIGN O}"
152 <consonant> u: "\N{DEVANAGARI VOWEL SIGN U}"
153 <consonant> uu: "\N{DEVANAGARI VOWEL SIGN UU}"
154 A: "\N{DEVANAGARI LETTER AA}"
155 A.c: "\N{DEVANAGARI LETTER CANDRA O}"
156 AUM: "\N{DEVANAGARI OM}"
157 Ch: "\N{DEVANAGARI LETTER CHA}"
158 D: "\N{DEVANAGARI LETTER DDA}"
159 Dh: "\N{DEVANAGARI LETTER DDHA}"
160 G: "\N{DEVANAGARI LETTER GHHA}"
161 GY: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"
162 H: "\N{DEVANAGARI SIGN VISARGA}"
163 I: "\N{DEVANAGARI LETTER II}"
164 J: "\N{DEVANAGARI LETTER ZA}"
165 K: "\N{DEVANAGARI LETTER KHHA}"
166 L: "\N{DEVANAGARI LETTER LLA}"
167 LLI: "\N{DEVANAGARI LETTER VOCALIC LL}"
168 LLi: "\N{DEVANAGARI LETTER VOCALIC L}"
169 L^i: "\N{DEVANAGARI LETTER VOCALIC L}"
170 M: "\N{DEVANAGARI SIGN ANUSVARA}"
171 N: "\N{DEVANAGARI LETTER NNA}"
172 OM: "\N{DEVANAGARI OM}"
173 R: "\N{DEVANAGARI LETTER RRA}"
174 RRI: "\N{DEVANAGARI LETTER VOCALIC RR}"
175 RRi: "\N{DEVANAGARI LETTER VOCALIC R}"
176 R^i: "\N{DEVANAGARI LETTER VOCALIC R}"
177 Rs.: "\N{INDIAN RUPEE SIGN}"
178 Sh: "\N{DEVANAGARI LETTER SSA}"
179 T: "\N{DEVANAGARI LETTER TTA}"
180 Th: "\N{DEVANAGARI LETTER TTHA}"
181 U: "\N{DEVANAGARI LETTER UU}"
182 Y: "\N{DEVANAGARI LETTER YYA}"
183 ^e: "\N{DEVANAGARI LETTER SHORT E}"
184 ^n: "\N{DEVANAGARI LETTER NNNA}"
185 ^o: "\N{DEVANAGARI LETTER SHORT O}"
186 a: "\N{DEVANAGARI LETTER A}"
187 a.c: "\N{DEVANAGARI LETTER CANDRA E}"
188 a.e: "\N{DEVANAGARI LETTER CANDRA A}"
189 aa: "\N{DEVANAGARI LETTER AA}"
190 ai: "\N{DEVANAGARI LETTER AI}"
191 au: "\N{DEVANAGARI LETTER AU}"
192 b: "\N{DEVANAGARI LETTER BA}"
193 bh: "\N{DEVANAGARI LETTER BHA}"
194 ch: "\N{DEVANAGARI LETTER CA}"
195 chh: "\N{DEVANAGARI LETTER CHA}"
196 d: "\N{DEVANAGARI LETTER DA}"
197 dh: "\N{DEVANAGARI LETTER DHA}"
198 dny: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"
199 e: "\N{DEVANAGARI LETTER E}"
200 ee: "\N{DEVANAGARI LETTER II}"
201 f: "\N{DEVANAGARI LETTER FA}"
202 g: "\N{DEVANAGARI LETTER GA}"
203 gh: "\N{DEVANAGARI LETTER GHA}"
204 h: "\N{DEVANAGARI LETTER HA}"
205 i: "\N{DEVANAGARI LETTER I}"
206 ii: "\N{DEVANAGARI LETTER II}"
207 j: "\N{DEVANAGARI LETTER JA}"
208 jh: "\N{DEVANAGARI LETTER JHA}"
209 j~n: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"
210 k: "\N{DEVANAGARI LETTER KA}"
211 kSh: "\N{DEVANAGARI LETTER KA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER SSA}"
212 kh: "\N{DEVANAGARI LETTER KHA}"
213 l: "\N{DEVANAGARI LETTER LA}"
214 ld: "\N{DEVANAGARI LETTER LLA}"
215 m: "\N{DEVANAGARI LETTER MA}"
216 n: "\N{DEVANAGARI LETTER NA}"
217 o: "\N{DEVANAGARI LETTER O}"
218 p: "\N{DEVANAGARI LETTER PA}"
219 ph: "\N{DEVANAGARI LETTER PHA}"
220 q: "\N{DEVANAGARI LETTER QA}"
221 r: "\N{DEVANAGARI LETTER RA}"
222 s: "\N{DEVANAGARI LETTER SA}"
223 sh: "\N{DEVANAGARI LETTER SHA}"
224 t: "\N{DEVANAGARI LETTER TA}"
225 th: "\N{DEVANAGARI LETTER THA}"
226 u: "\N{DEVANAGARI LETTER U}"
227 uu: "\N{DEVANAGARI LETTER UU}"
228 v: "\N{DEVANAGARI LETTER VA}"
229 x: "\N{DEVANAGARI LETTER KA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER SSA}"
230 y: "\N{DEVANAGARI LETTER YA}"
231 z: "\N{DEVANAGARI LETTER ZA}"
232 zh: "\N{DEVANAGARI LETTER LLLA}"
233 '|': "\N{DEVANAGARI DANDA}"
234 '||': "\N{DEVANAGARI DOUBLE DANDA}"
235 ~N: "\N{DEVANAGARI LETTER NGA}"
236 ~Rs.: "\N{INDIAN RUPEE SIGN}"
237 ~n: "\N{DEVANAGARI LETTER NYA}"
238 "\N{LATIN SMALL LETTER N WITH DOT ABOVE}": "\N{DEVANAGARI LETTER NGA}"
239onmatch_rules:
240- <consonant> + <consonant>: "\N{DEVANAGARI SIGN VIRAMA}"
241whitespace:
242 consolidate: false
243 default: ' '
244 token_class: whitespace
245metadata:
246 title: ITRANS to Unicode
247 version: 0.1.0
248"""
249gt = GraphTransliterator.from_yaml(easyreading_yaml)

Transliterating

With the transliterator created, you can now transliterate using
GraphTransliterator.transliterate():

250gt.transliterate("aaj mausam ba.Daa beiimaan hai, aaj mausam")

'आज मौसम बड़ा बेईमान है, आज मौसम'

Other Information

Graph Transliterator has a few other tools built in that are for more
specialized applications.

If you want to receive the details of the most recent transliteration, access
GraphTransliterator.last_matched_rules to get this list of rules
matched:

251gt.last_matched_rules

[TransliterationRule(production='आ', prev_classes=None, prev_tokens=None, tokens=['aa'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ज', prev_classes=None, prev_tokens=None, tokens=['j'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='म', prev_classes=None, prev_tokens=None, tokens=['m'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ौ', prev_classes=['consonant'], prev_tokens=None, tokens=['au'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='स', prev_classes=None, prev_tokens=None, tokens=['s'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='', prev_classes=['consonant'], prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='म', prev_classes=None, prev_tokens=None, tokens=['m'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ब', prev_classes=None, prev_tokens=None, tokens=['b'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='', prev_classes=['consonant'], prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='ड़', prev_classes=None, prev_tokens=None, tokens=['.D'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ा', prev_classes=['consonant'], prev_tokens=None, tokens=['aa'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ब', prev_classes=None, prev_tokens=None, tokens=['b'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='े', prev_classes=['consonant'], prev_tokens=None, tokens=['e'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='ई', prev_classes=None, prev_tokens=None, tokens=['ii'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='म', prev_classes=None, prev_tokens=None, tokens=['m'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ा', prev_classes=['consonant'], prev_tokens=None, tokens=['aa'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='न', prev_classes=None, prev_tokens=None, tokens=['n'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ह', prev_classes=None, prev_tokens=None, tokens=['h'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ै', prev_classes=['consonant'], prev_tokens=None, tokens=['ai'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production=',', prev_classes=None, prev_tokens=None, tokens=[','], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='आ', prev_classes=None, prev_tokens=None, tokens=['aa'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ज', prev_classes=None, prev_tokens=None, tokens=['j'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='म', prev_classes=None, prev_tokens=None, tokens=['m'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='ौ', prev_classes=['consonant'], prev_tokens=None, tokens=['au'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='स', prev_classes=None, prev_tokens=None, tokens=['s'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
 TransliterationRule(production='', prev_classes=['consonant'], prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='म', prev_classes=None, prev_tokens=None, tokens=['m'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

Or if you just want to know the tokens matched by each rule, check
GraphTransliterator.last_matched_rule_tokens:

252gt.last_matched_rule_tokens

[['aa'],
 ['j'],
 [' '],
 ['m'],
 ['au'],
 ['s'],
 ['a'],
 ['m'],
 [' '],
 ['b'],
 ['a'],
 ['.D'],
 ['aa'],
 [' '],
 ['b'],
 ['e'],
 ['ii'],
 ['m'],
 ['aa'],
 ['n'],
 [' '],
 ['h'],
 ['ai'],
 [','],
 [' '],
 ['aa'],
 ['j'],
 [' '],
 ['m'],
 ['au'],
 ['s'],
 ['a'],
 ['m']]

You can access the directed tree used by GraphTransliterator using
GraphTransliterator.graph:

253gt.graph

<graphtransliterator.graphs.DirectedGraph at 0x7f4528100f50>

Advanced Tutorial: Bundling a Transliterator

This advanced tutorial builds upon the original tutorial to show you how to bundle a
transliterator for inclusion in Graph Transliterator.

Contributions to Graph Transliterator are strongly encouraged!

You will make a very simple transliterator while going through the steps of bundling it
into Graph Transliterator.

Git Basics: Fork, Branch, Sync, Commit

Fork

The first thing to do, if you have not already, is to create a fork of Graph
Transliterator. See https://help.github.com/en/articles/fork-a-repo

(From here on out, we will be using the command line.)

After creating a fork, clone your forked repo:

git clone https://github.com/YOUR-USERNAME/graphtransliterator

Branch

Once you have done that, go into that directory and create a new branch:

cd graphtransliterator
git checkout -b [name_of_your_transliterator_branch]

For this example, you can use the branch a_to_b:

cd graphtransliterator
git checkout -b a_to_b

Then, push that branch to the origin (your personal github fork):

git push origin [name_of_your_transliterator_branch]

Here that would be:

.. code-block:: bash

 git push origin a_to_b

Next, add a remote upstream for Graph Transliterator (the official Graph Transliterator
repo):

git remote add upstream https://github.com/seanpue/graphtransliterator.git

Sync

To update your local copy of the the remote (official Graph Transliterator repo), run:

git fetch upstream

To sync your personal fork with the remote, run:

git merge upstream/master

See https://help.github.com/en/articles/syncing-a-fork for more info.
You can run the previous two commands at any time.

Commit

You can commit your changes by running:

git commit -m 'comment here about the commit'

Adding A Transliterator

To add a transliterator, the next step is to create a subdirectory in
transliterators. For this tutorial, you can make a branch named a_to_b.

Note that this will be under graphtransliterator/transliterators, so from the
root directory enter:

cd graphtransliterator/transliterators
mkdir [name_of_your_transliterator]
cd [name_of_your_transliterator]

For this example, you would enter:

cd graphtransliterator/transliterators
mkdir a_to_b
cd a_to_b

In the graphtransliterator/transliterators/[name_of_your_transliterator] directory,
you will add:

	an __init__.py

	a YAML file in the “easy reading format”

	a JSON file that is a serialization of the transliterator (optional)

	a tests directory including a file named [name_of_your_transliterator]_tests.yaml

	a Python test named test_[name_of_your_transliterator].py (optional)

Here is a tree showing the file organization:

transliterators
├── {{source_to_target}}
| ├── __init__.py
| ├── {{source_to_target}}.json
| ├── {{source_to_target}}.yaml
└── tests
 ├── test_{{source_to_target}}.py
 └── {{source_to_target}}_tests.yaml

YAML File

The YAML file should contain the “easy reading” version of your transliterator.
For this example, create a file called a_to_b.yaml. Add a metadata field to the
YAML file, as well, following the guidelines.

tokens:
 a: [a_class]
 ' ': [whitespace]
rules:
 a: A
onmatch_rules:
 - <a_class> + <a_class>: ","
whitespace:
 default: ' '
 token_class: whitespace
 consolidate: false
metadata:
 name: A to B
 version: 0.0.1
 url: http://website_of_project.com
 author: Your Name is Optional
 author_email: your_email@is_option.al
 maintainer: Maintainer's Name is Optional
 maintainer_email: maintainers_email@is_option.al
 license: MIT or Other Open Source License
 keywords: [add, keywords, here, as, a, list]
 project_urls:
 Documentation: https://link_to_documentation.html
 Source: https://link_to_sourcecode.html
 Tracker: https://link_to_issue_tracker.html

For most use cases, the project_urls can link to the Graph Transliterator
Github page.

JSON File

To create a JSON file, you can use the command line interface:

$ graphtransliterator dump –from yaml_file a_to_b.yaml > a_to_b.json

Alternatively, you can use the make-json command:

$ graphtransliterator make-json AToB

The JSON file loads more quickly than the YAML one, but it is not necessary during
development.

__init__.py

The __init__.py will create the bundled transliterator, which is a subclass of
GraphTransliterator named Bundled.

Following convention, uou need to name your transliterator’s class is CamelCase. For
this example, it would be AToB:

from graphtransliterator.transliterators import Bundled

class AToB(Bundled):
 """
 A to B Bundled Graph Transliterator
 """

 def __init__(self, **kwargs):
 """Initialize transliterator from YAML."""
 self.from_YAML(
 **kwargs
) # defaults to check_ambiguity=True, check_coverage=True
 # When ready, remove the previous lines and initialize more quickly from JSON:
 # self.init_from_JSON(**kwargs) # check_ambiguity=False, check_coverage=False

When you load the bundled transliterator from YAML using from_YAML it will check
for ambiguity as well as check the coverage of the tests. You can turn those features
off temporarily here.

When a transliterator is added into Graph Transliterator, it will likely be set to load
from JSON by default. Tests will check for ambiguity and coverage.

Tests

Graph Transliterator requires that all bundled transliterators have tests that visit
every edge and node of the internal graph and that use all on-match rules. The test file
should be a YAML file defining a dictionary keyed from input to correct output.

You can test the transliterator as you are developing it by adding YAML tests and
running the command:

graphtransliterator test [name_of_your_transliterator]

Tests can be generated using the command line interface:

mkdir tests
graphtransliterator generate-tests --from bundled [name_of_your_transliterator] > tests/[name_of_your_transliterator]

Testing the Transliterator

You should test the transliterator to make sure everything is correct, including its
metadata. To do that, navigate back to the root directory of graphtransliterator
and execute the command:

py.test tests/test_transliterators.py

You can also run the complete suite of tests by running:

tox

Pushing Your Transliterator

When you are finished with a version of your transliterator, you should once again
commit it to your github branch after syncing your branch with the remote. Then you can
make a pull request to include the transliterator in Graph Transliterator. You can do
that from the Graph Transliterator Github page.
See https://help.github.com/en/articles/creating-a-pull-request-from-a-fork.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

Contributor Code of Conduct

Please note that this project is released with a Contributor Code of
Conduct. By participating in this project you agree to
abide by its terms.

Types of Contributions

You can contribute in many ways:

Report Bugs

Report bugs at https://github.com/seanpue/graphtransliterator/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Graph-based Transliterator could always use more documentation, whether as part of the
official Graph-based Transliterator docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/seanpue/graphtransliterator/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Add Transliterators

We welcome new transliterators to be added to the bundled transliterators!

See the documentation about Bundled Transliterators and look at Example as a model.

Raise an issue on Github, https://github.com/seanpue/graphtransliterator/issues

Then create a new branch with the new transliterator. Make sure the transliterator
passes all of these requirements:

	is a submodule of graphtransliterator.transliterators

	has a unique name, preferably in format source_to_target

	has the following files:
- __init__.py
- {{source_to_target}}.yaml
- {{source_to_target}}.json
- tests/{{source_to_target}}_tests.yaml
- tests/test_{{source_to_target}}.py (optional)

	has a classname in camel case, e.g. SourceToTarget

	has complete test coverage of all nodes and edges of generated graph and all onmatch
rules, if present

	has required metadata in the YAML file.

When all the requirements are fulfilled, submit a pull request, and it will be reviewed
for inclusion in a near-future release.

Get Started!

Ready to contribute? Here’s how to set up graphtransliterator for local
development.

	Fork the graphtransliterator repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/graphtransliterator.git

	Install your local copy into a virtualenv. Assuming you have
virtualenvwrapper installed, this is how you set up your fork for local
development:

$ mkvirtualenv graphtransliterator
$ cd graphtransliterator/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, format your code using the Black code
formatter. (You can do that in your editor, as well). Then check that your
changes pass flake8 and the tests, including testing other Python versions
with tox:

$ black graphtransliterator
$ flake8 graphtransliterator tests
$ python setup.py test or py.test
$ tox

To get black, flake8, and tox, just pip install them into your virtualenv.

You should also test your coverage using make:

$ make coverage

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7 and 3.8 for PyPy. Check
https://travis-ci.org/seanpue/graphtransliterator/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_graphtransliterator

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

The module uses Github Actions to deploy to TestPyPI and to PyPI.

API Reference

A list of the full API reference of all public classes and functions
is below.

Public members can (and should) be imported from graphtransliterator:

from graphtransliterator import GraphTransliterator

Bundled transliterators require that graphtransliterator.transliterators:
be imported:

import graphtransliterator.transliterators
transliterators.iter_names()

Core Classes

	
class graphtransliterator.GraphTransliterator(tokens, rules, whitespace, onmatch_rules=None, metadata=None, ignore_errors=False, check_ambiguity=True, onmatch_rules_lookup=None, tokens_by_class=None, graph=None, tokenizer_pattern=None, graphtransliterator_version=None, **kwargs)

	A graph-based transliteration tool that lets you convert the symbols
of one language or script to those of another using rules that you define.

Transliteration of tokens of an input string to an output string is
configured by: a set of input token types with classes, pattern-matching rules
involving sequences of tokens as well as preceding or following tokens and
token classes, insertion rules between matches, and optional consolidation
of whitespace. Rules are ordered by specificity.

Note

This constructor does not validate settings and should typically not be called
directly. Use from_dict() instead. For “easy reading” support, use
from_easyreading_dict(), from_yaml(), or from_yaml_file().
Keyword parameters used here (ignore_errors, check_ambiguity) can be passed
from those other constructors.

	Parameters

	
	tokens (dict of {str: set of str}) – Mapping of input token types to token classes

	rules (list of TransliterationRule) – list of transliteration rules ordered by cost

	onmatch_rules (list of OnMatchRule, or None) – Rules for output to be inserted between tokens
of certain classes when a transliteration rule has been matched
but before its production string has been added to the output

	whitespace (WhitespaceRules) – Rules for handling whitespace

	metadata (dict or None) – Metadata settings

	ignore_errors (bool, optional) – If true, transliteration errors are ignored and do not raise an
exception. The default is false.

	check_ambiguity (bool, optional) – If true (default), transliteration rules are checked for ambiguity. load()
and loads() do not check ambiguity by default.

	onmatch_rules_lookup (dict of {str: dict of {str: list of int}}, optional`) – OnMatchRules lookup, used internally, will be generated if not present.

	tokens_by_class (dict of {str: set of str}, optional) – Tokens by class, used internally, will be generated if not present.

	graph (DirectedGraph, optional) – Directed graph used by Graph Transliterator, will be generated if not present.

	tokenizer_pattern (str, optional) – Regular expression pattern for input string tokenization, will be generated if
not present.

	graphtransliterator_version (str, optional) – Version of graphtransliterator, added by dump() and dumps().

Example

1from graphtransliterator import GraphTransliterator, OnMatchRule, TransliterationRule, WhitespaceRules
2settings = {'tokens': {'a': {'vowel'}, ' ': {'wb'}}, 'onmatch_rules': [OnMatchRule(prev_classes=['vowel'], next_classes=['vowel'], production=',')], 'rules': [TransliterationRule(production='A', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562), TransliterationRule(production=' ', prev_classes=None, prev_tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.5849625007211562)], 'metadata': {'author': 'Author McAuthorson'}, 'whitespace': WhitespaceRules(default=' ', token_class='wb', consolidate=False)}
3gt = GraphTransliterator(**settings)
4gt.transliterate('a')

'A'

See also

	from_dict
	Constructor from dictionary of settings

	from_easyreading_dict
	Constructor from dictionary in “easy reading” format

	from_yaml
	Constructor from YAML string in “easy reading” format

	from_yaml_file
	Constructor from YAML file in “easy reading” format

	
dump(compression_level=0)

	Dump configuration of Graph Transliterator to Python data types.

Compression is turned off by default.

	Parameters

	compression_level (int) – A value in 0 (default, no compression), 1 (compression including graph),
and 2 (compressiong without graph)

	Returns

	GraphTransliterator configuration as a dictionary with keys:

	"tokens"
	Mappings of tokens to their classes
(OrderedDict of {str: list of str})

	"rules"
	Transliteration rules in direct format
(list of dict of {str: str})

	"whitespace"
	Whitespace settings
(dict of {str: str})

	"onmatch_rules"
	On match rules
(list of OrderedDict)

	"metadata"
	Dictionary of metadata (dict)

	"ignore_errors"
	Ignore errors in transliteration (bool)

	"onmatch_rules_lookup"
	Dictionary keyed by current token to previous token
containing a list of indexes of applicable OnmatchRule
to try
(dict of {str: dict of {str: list of int}})

	"tokens_by_class"
	Tokens keyed by token class, used internally
(dict of {str: list of str})

	"graph"
	Serialization of DirectedGraph
(dict)

	"tokenizer_pattern"
	Regular expression for tokenizing
(str)

	"graphtransliterator_version"
	Module version of graphtransliterator (str)

	Return type

	OrderedDict

Example

 5yaml_ = '''
 6tokens:
 7 a: [vowel]
 8 ' ': [wb]
 9rules:
10 a: A
11 ' ': ' '
12whitespace:
13 default: " "
14 consolidate: false
15 token_class: wb
16onmatch_rules:
17 - <vowel> + <vowel>: ',' # add a comma between vowels
18metadata:
19 author: "Author McAuthorson"
20'''
21gt = GraphTransliterator.from_yaml(yaml_)
22gt.dump()

OrderedDict([('tokens', {'a': ['vowel'], ' ': ['wb']}),
 ('rules',
 [OrderedDict([('production', 'A'),
 ('tokens', ['a']),
 ('cost', 0.5849625007211562)]),
 OrderedDict([('production', ' '),
 ('tokens', [' ']),
 ('cost', 0.5849625007211562)])]),
 ('whitespace',
 {'token_class': 'wb', 'default': ' ', 'consolidate': False}),
 ('onmatch_rules',
 [OrderedDict([('prev_classes', ['vowel']),
 ('next_classes', ['vowel']),
 ('production', ',')])]),
 ('metadata', {'author': 'Author McAuthorson'}),
 ('ignore_errors', False),
 ('onmatch_rules_lookup', {'a': {'a': [0]}}),
 ('tokens_by_class', {'vowel': ['a'], 'wb': [' ']}),
 ('graph',
 {'edge': {0: {1: {'token': 'a', 'cost': 0.5849625007211562},
 3: {'token': ' ', 'cost': 0.5849625007211562}},
 1: {2: {'cost': 0.5849625007211562}},
 3: {4: {'cost': 0.5849625007211562}}},
 'edge_list': [(0, 1), (0, 3), (1, 2), (3, 4)],
 'node': [{'ordered_children': {'a': [1], ' ': [3]},
 'type': 'Start'},
 {'token': 'a',
 'ordered_children': {'__rules__': [2]},
 'type': 'token'},
 {'accepting': True, 'type': 'rule', 'rule_key': 0},
 {'token': ' ',
 'ordered_children': {'__rules__': [4]},
 'type': 'token'},
 {'accepting': True, 'type': 'rule', 'rule_key': 1}]}),
 ('tokenizer_pattern', '(a|\\)'),
 ('graphtransliterator_version', '1.2.2')])

See also

	dumps
	Dump Graph Transliterator configuration to JSON string

	load
	Load Graph Transliteration from configuration in Python data types

	loads
	Load Graph Transliteration from configuration as a JSON string

	
dumps(compression_level=2)

	
	Parameters

	
	compression_level (int) – A value in 0 (no compression), 1 (compression including graph),
and 2 (default, compression without graph)

	separators (tuple of str) – Separators used by json.dumps(), default is compact

	(JSON) (Dump settings of Graph Transliterator to Javascript Object Notation) –

	default. (Compression is turned on by) –

	Returns

	JSON string

	Return type

	str

Examples

23yaml_ = '''
24 tokens:
25 a: [vowel]
26 ' ': [wb]
27 rules:
28 a: A
29 ' ': ' '
30 whitespace:
31 default: " "
32 consolidate: false
33 token_class: wb
34 onmatch_rules:
35 - <vowel> + <vowel>: ',' # add a comma between vowels
36 metadata:
37 author: "Author McAuthorson"
38'''
39gt = GraphTransliterator.from_yaml(yaml_)
40gt.dumps()

'{"graphtransliterator_version":"1.2.2","compressed_settings":[["vowel","wb"],[" ","a"],[[1],[0]],[["A",0,0,[1],0,0,-1],[" ",0,0,[0],0,0,-1]],[" ","wb",0],[[[0],[0],","]],{"author":"Author McAuthorson"},null]}'

See also

	dump
	Dump Graph Transliterator configuration to Python data types

	load
	Load Graph Transliteration from configuration in Python data types

	loads
	Load Graph Transliteration from configuration as a JSON string

	
static from_dict(dict_settings, **kwargs)

	Generate GraphTransliterator from dict settings.

	Parameters

	dict_settings (dict) – Dictionary of settings

	Returns

	Graph transliterator

	Return type

	GraphTransliterator

	
static from_easyreading_dict(easyreading_settings, **kwargs)

	Constructs GraphTransliterator from a dictionary of settings in
“easy reading” format, i.e. the loaded contents of a YAML string.

	Parameters

	easyreading_settings (dict) – Settings dictionary in easy reading format with keys:

	"tokens"
	Mappings of tokens to their classes
(dict of {str: list of str})

	"rules"
	Transliteration rules in “easy reading” format
(list of dict of {str: str})

	"onmatch_rules"
	On match rules in “easy reading” format
(dict of {str: str}, optional)

	"whitespace"
	Whitespace definitions, including default whitespace token,
class of whitespace tokens, and whether or not to consolidate
(dict of {‘default’: str, ‘token_class’: str,
consolidate: bool}, optional)

	"metadata"
	Dictionary of metadata (dict, optional)

	Returns

	Graph Transliterator

	Return type

	GraphTransliterator

Note

Called by from_yaml().

Example

41tokens = {
42 'ab': ['class_ab'],
43 ' ': ['wb']
44}
45whitespace = {
46 'default': ' ',
47 'token_class': 'wb',
48 'consolidate': True
49}
50onmatch_rules = [
51 {'<class_ab> + <class_ab>': ','}
52]
53rules = {'ab': 'AB',
54 ' ': '_'}
55settings = {'tokens': tokens,
56 'rules': rules,
57 'whitespace': whitespace,
58 'onmatch_rules': onmatch_rules}
59gt = GraphTransliterator.from_easyreading_dict(settings)
60gt.transliterate("ab abab")

'AB_AB,AB'

See also

	from_yaml
	Constructor from YAML string in “easy reading” format

	from_yaml_file
	Constructor from YAML file in “easy reading” format

	
static from_yaml(yaml_str, charnames_escaped=True, **kwargs)

	Construct GraphTransliterator from a YAML str.

	Parameters

	
	yaml_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – YAML mappings of tokens, rules, and (optionally) onmatch_rules

	charnames_escaped (boolean) – Unescape Unicode during YAML read (default True)

Note

Called by from_yaml_file() and calls from_easyreading_dict().

Example

61yaml_ = '''
62tokens:
63 a: [class1]
64 ' ': [wb]
65rules:
66 a: A
67 ' ': ' '
68whitespace:
69 default: ' '
70 consolidate: True
71 token_class: wb
72onmatch_rules:
73 - <class1> + <class1>: "+"
74'''
75gt = GraphTransliterator.from_yaml(yaml_)
76gt.transliterate("a aa")

'A A+A'

See also

	from_easyreading_dict
	Constructor from dictionary in “easy reading” format

	from_yaml
	Constructor from YAML string in “easy reading” format

	from_yaml_file
	Constructor from YAML file in “easy reading” format

	
static from_yaml_file(yaml_filename, **kwargs)

	Construct GraphTransliterator from YAML file.

	Parameters

	yaml_filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of YAML file, containing tokens, rules, and (optionally)
onmatch_rules

Note

Calls from_yaml().

See also

	from_yaml
	Constructor from YAML string in “easy reading” format

	from_easyreading_dict
	Constructor from dictionary in “easy reading” format

	
property graph

	Graph used in transliteration.

	Type

	DirectedGraph

	
property graphtransliterator_version

	Graph Transliterator version.

	Type

	str

	
property ignore_errors

	Ignore transliteration errors setting.

	Type

	bool

	
property last_input_tokens

	Last tokenization of the input string, with whitespace
at start and end.

	Type

	list of str

	
property last_matched_rule_tokens

	Last matched tokens for each rule.

	Type

	list of list of str

	
property last_matched_rules

	Last transliteration rules matched.

	Type

	list of TransliterationRule

	
static load(settings, **kwargs)

	Create GraphTransliterator from settings as Python data types.

	Parameters

	settings – GraphTransliterator configuration as a dictionary with keys:

	"tokens"
	Mappings of tokens to their classes
(dict of {str: list of str})

	"rules"
	Transliteration rules in direct format
(list of OrderedDict of {str: str})

	"whitespace"
	Whitespace settings
(dict of {str: str})

	"onmatch_rules"
	On match rules
(list of OrderedDict, optional)

	"metadata"
	Dictionary of metadata (dict, optional)

	"ignore_errors"
	Ignore errors. (bool, optional)

	"onmatch_rules_lookup"
	Dictionary keyed by current token to previous token
containing a list of indexes of applicable OnmatchRule
to try
(dict of {str: dict of {str: list of int}}, optional)

	tokens_by_class
	Tokens keyed by token class, used internally
(dict of {str: list of str}, optional)

	graph
	Serialization of DirectedGraph
(dict, optional)

	"tokenizer_pattern"
	Regular expression for tokenizing
(str, optional)

	"graphtransliterator_version"
	Module version of graphtransliterator (str, optional)

	Returns

	Graph Transliterator

	Return type

	GraphTransliterator

Example

 77from collections import OrderedDict
 78settings = {'tokens': {'a': ['vowel'], ' ': ['wb']},
 79 'rules': [OrderedDict([('production', 'A'),
 80 # Can be compacted, removing None values
 81 # ('prev_tokens', None),
 82 ('tokens', ['a']),
 83 ('next_classes', None),
 84 ('next_tokens', None),
 85 ('cost', 0.5849625007211562)]),
 86 OrderedDict([('production', ' '),
 87 ('prev_classes', None),
 88 ('prev_tokens', None),
 89 ('tokens', [' ']),
 90 ('next_classes', None),
 91 ('next_tokens', None),
 92 ('cost', 0.5849625007211562)])],
 93 'whitespace': {'default': ' ', 'token_class': 'wb', 'consolidate': False},
 94 'onmatch_rules': [OrderedDict([('prev_classes', ['vowel']),
 95 ('next_classes', ['vowel']),
 96 ('production', ',')])],
 97 'metadata': {'author': 'Author McAuthorson'},
 98 'onmatch_rules_lookup': {'a': {'a': [0]}},
 99 'tokens_by_class': {'vowel': ['a'], 'wb': [' ']},
100 'graph': {'edge': {0: {1: {'token': 'a', 'cost': 0.5849625007211562},
101 3: {'token': ' ', 'cost': 0.5849625007211562}},
102 1: {2: {'cost': 0.5849625007211562}},
103 3: {4: {'cost': 0.5849625007211562}}},
104 'node': [{'type': 'Start', 'ordered_children': {'a': [1], ' ': [3]}},
105 {'type': 'token', 'token': 'a', 'ordered_children': {'__rules__': [2]}},
106 {'type': 'rule',
107 'rule_key': 0,
108 'accepting': True,
109 'ordered_children': {}},
110 {'type': 'token', 'token': ' ', 'ordered_children': {'__rules__': [4]}},
111 {'type': 'rule',
112 'rule_key': 1,
113 'accepting': True,
114 'ordered_children': {}}],
115 'edge_list': [(0, 1), (1, 2), (0, 3), (3, 4)]},
116 'tokenizer_pattern': '(a|\)',
117 'graphtransliterator_version': '0.3.3'}
118gt = GraphTransliterator.load(settings)
119gt.transliterate('aa')

'A,A'

120# can be compacted
121settings.pop('onmatch_rules_lookup')
122GraphTransliterator.load(settings).transliterate('aa')

'A,A'

See also

	dump
	Dump Graph Transliterator configuration to Python data types

	dumps
	Dump Graph Transliterator configuration to JSON string

	loads
	Load Graph Transliteration from configuration as a JSON string

	
static loads(settings, **kwargs)

	Create GraphTransliterator from JavaScript Object Notation (JSON) string.

	Parameters

	settings – JSON settings for GraphTransliterator

	Returns

	Graph Transliterator

	Return type

	GraphTransliterator

Example

123JSON_settings = '''{"tokens": {"a": ["vowel"], " ": ["wb"]}, "rules": [{"production": "A", "prev_classes": null, "prev_tokens": null, "tokens": ["a"], "next_classes": null, "next_tokens": null, "cost": 0.5849625007211562}, {"production": " ", "prev_classes": null, "prev_tokens": null, "tokens": [" "], "next_classes": null, "next_tokens": null, "cost": 0.5849625007211562}], "whitespace": {"default": " ", "token_class": "wb", "consolidate": false}, "onmatch_rules": [{"prev_classes": ["vowel"], "next_classes": ["vowel"], "production": ","}], "metadata": {"author": "Author McAuthorson"}, "ignore_errors": false, "onmatch_rules_lookup": {"a": {"a": [0]}}, "tokens_by_class": {"vowel": ["a"], "wb": [" "]}, "graph": {"node": [{"type": "Start", "ordered_children": {"a": [1], " ": [3]}}, {"type": "token", "token": "a", "ordered_children": {"__rules__": [2]}}, {"type": "rule", "rule_key": 0, "accepting": true, "ordered_children": {}}, {"type": "token", "token": " ", "ordered_children": {"__rules__": [4]}}, {"type": "rule", "rule_key": 1, "accepting": true, "ordered_children": {}}], "edge": {"0": {"1": {"token": "a", "cost": 0.5849625007211562}, "3": {"token": " ", "cost": 0.5849625007211562}}, "1": {"2": {"cost": 0.5849625007211562}}, "3": {"4": {"cost": 0.5849625007211562}}}, "edge_list": [[0, 1], [1, 2], [0, 3], [3, 4]]}, "tokenizer_pattern": "(a|)", "graphtransliterator_version": "1.2.2"}'''
124
125gt = GraphTransliterator.loads(JSON_settings)
126gt.transliterate('a')

'A'

See also

	dump
	Dump Graph Transliterator configuration to Python data types

	dumps
	Dump Graph Transliterator configuration to JSON string

	load
	Load Graph Transliteration from configuration in Python data types

	
match_at(token_i, tokens, match_all=False)

	Match best (least costly) transliteration rule at a given index in the
input tokens and return the index to that rule. Optionally, return all
rules that match.

	Parameters

	
	token_i (int) – Location in tokens at which to begin

	tokens (list of str) – List of tokens

	match_all (bool, optional) – If true, return the index of all rules matching at the given
index. The default is false.

	Returns

	Index of matching transliteration rule in
GraphTransliterator.rules or None. Returns a list of
int or an empty list if match_all is true.

	Return type

	int, None, or list of int

Note

Expects whitespaces token at beginning and end of tokens.

Examples

127gt = GraphTransliterator.from_yaml('''
128 tokens:
129 a: []
130 a a: []
131 ' ': [wb]
132 rules:
133 a: <A>
134 a a: <AA>
135 whitespace:
136 default: ' '
137 consolidate: True
138 token_class: wb
139''')
140tokens = gt.tokenize("aa")
141tokens # whitespace added to ends

[' ', 'a', 'a', ' ']

142gt.match_at(1, tokens) # returns index to rule

0

143gt.rules[gt.match_at(1, tokens)] # actual rule

TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437)

144gt.match_at(1, tokens, match_all=True) # index to rules, with match_all

[0, 1]

145[gt.rules[_] for _ in gt.match_at(1, tokens, match_all=True)]

[TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

	
property metadata

	Metadata of transliterator

	Type

	dict

	
property onmatch_rules

	Rules for productions between matches.

	Type

	list of OnMatchRules

	
property onmatch_rules_lookup

	On Match Rules lookup

	Type

	dict

	
property productions

	List of productions of each transliteration rule.

	Type

	list of str

	
pruned_of(productions)

	Remove transliteration rules with specific output productions.

	Parameters

	productions (str, or list of str) – list of productions to remove

	Returns

	Graph transliterator pruned of certain productions.

	Return type

	graphtransliterator.GraphTransliterator

Note

Uses original initialization parameters to construct a new
GraphTransliterator.

Examples

146gt = GraphTransliterator.from_yaml('''
147 tokens:
148 a: []
149 a a: []
150 ' ': [wb]
151 rules:
152 a: <A>
153 a a: <AA>
154 whitespace:
155 default: ' '
156 consolidate: True
157 token_class: wb
158''')
159gt.rules

[TransliterationRule(production='<AA>', prev_classes=None, prev_tokens=None, tokens=['a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
 TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

160gt.pruned_of('<AA>').rules

[TransliterationRule(production='<A>', prev_classes=None, prev_tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

161gt.pruned_of(['<A>', '<AA>']).rules

[]

	
property rules

	Transliteration rules sorted by cost.

	Type

	list of TransliterationRule

	
tokenize(input)

	Tokenizes an input string.

Adds initial and trailing whitespace, which can be consolidated.

	Parameters

	input (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to tokenize

	Returns

	List of tokens, with default whitespace token at beginning and end.

	Return type

	list of str

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Unrecognizable input, such as a character that is not in a token

Examples

162tokens = {'ab': ['class_ab'], ' ': ['wb']}
163whitespace = {'default': ' ', 'token_class': 'wb', 'consolidate': True}
164rules = {'ab': 'AB', ' ': '_'}
165settings = {'tokens': tokens, 'rules': rules, 'whitespace': whitespace}
166gt = GraphTransliterator.from_easyreading_dict(settings)
167gt.tokenize('ab ')

[' ', 'ab', ' ']

	
property tokenizer_pattern

	Tokenizer pattern from transliterator

	Type

	str

	
property tokens

	Mappings of tokens to their classes.

	Type

	dict of {str

	Type

	set of str}

	
property tokens_by_class

	Tokenizer pattern from transliterator

	Type

	dict of {str

	Type

	list of str}

	
transliterate(input)

	Transliterate an input string into an output string.

	Parameters

	input (str) – Input string to transliterate

	Returns

	Transliteration output string

	Return type

	str

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Cannot parse input

Note

Whitespace will be temporarily appended to start and end of input
string.

Example

168GraphTransliterator.from_yaml(
169'''
170tokens:
171 a: []
172 ' ': [wb]
173rules:
174 a: A
175 ' ': '_'
176whitespace:
177 default: ' '
178 consolidate: True
179 token_class: wb
180''').transliterate("a a")

'A_A'

	
property whitespace

	Whitespace rules.

	Type

	WhiteSpaceRules

	
class graphtransliterator.CoverageTransliterator(*args, **kwargs)

	Subclass of GraphTransliterator that logs visits to graph and on_match rules.

Used to confirm that tests cover the entire graph and onmatch_rules.

	
check_coverage(raise_exception=True)

	Check coverage of graph and onmatch rules.

First checks graph coverage, then checks onmatch rules.

	
check_onmatchrules_coverage(raise_exception=True)

	Check coverage of onmatch rules.

	
clear_visited()

	Clear visited flags from graph and onmatch_rules.

Bundled Transliterators

graphtransliterator.transliterators

Bundled transliterators are loaded by explicitly importing
graphtransliterator.transliterators. Each is an instance of
graphtransliterator.bundled.Bundled.

	
class graphtransliterator.transliterators.Bundled(*args, **kwargs)

	Subclass of GraphTransliterator used for bundled Graph Transliterator.

	
property directory

	Directory of bundled transliterator, used to load settings.

	
from_JSON(check_ambiguity=False, coverage=False, **kwargs)

	Initialize from bundled JSON file (best for speed).

	Parameters

	
	check_ambiguity (bool,) – Should ambiguity be checked. Default is False.

	coverage (bool) – Should test coverage be checked. Default is False.

	
from_YAML(check_ambiguity=True, coverage=True, **kwargs)

	Initialize from bundled YAML file (best for development).

	Parameters

	
	check_ambiguity (bool,) – Should ambiguity be checked. Default is True.

	coverage (bool) – Should test coverage be checked. Default is True.

	
generate_yaml_tests(file=None)

	Generates YAML tests with complete coverage.

Uses the first token in a class as a sample. Assumes for onmatch rules that
the first sample token in a class has a unique production, which may not be the
case. These should be checked and edited.

	
load_yaml_tests()

	Iterator for YAML tests.

Assumes tests are found in subdirectory tests of module with name
NAME_tests.yaml, e.g. `source_to_target/tests/source_to_target_tests.yaml.

	
property name

	Name of bundled transliterator, e.g. ‘Example’

	
classmethod new(method='json', **kwargs)

	Return a new class instance from method (json/yaml).

	Parameters

	method (str (json or yaml)) – How to load bundled transliterator, JSON or YAML.

	
run_tests(transliteration_tests)

	Run transliteration tests.

	Parameters

	transliteration_tests (dict of {str:str}) – Dictionary of test from source -> correct target.

	
run_yaml_tests()

	Run YAML tests in MODULE/tests/MODULE_tests.yaml

	
property yaml_tests_filen

	Metadata of transliterator

	Type

	dict

	
class graphtransliterator.transliterators.Example(**kwargs)

	Example Bundled Graph Transliterator.

	
class graphtransliterator.transliterators.ITRANSDevanagariToUnicode(**kwargs)

	ITRANS Devanagari to Unicode Transliterator.

	
class graphtransliterator.transliterators.MetadataSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for Bundled metadata.

	
graphtransliterator.transliterators.iter_names()

	Iterate through bundled transliterator names.

	
graphtransliterator.transliterators.iter_transliterators(**kwds)

	Iterate through instances of bundled transliterators.

Graph Classes

	
class graphtransliterator.DirectedGraph(node=None, edge=None, edge_list=None)

	A very basic dictionary- and list-based directed graph. Nodes are a list of
dictionaries of node data. Edges are nested dictionaries keyed from the
head -> tail -> edge properties. An edge list is maintained. Can be
exported as a dictionary.

	
node

	List of node data

	Type

	list of dict

	
edge

	Mapping from head to tail of edge, holding edge data

	Type

	dict of {int: dict of {int: dict}}

	
edge_list

	List of head and tail of each edge

	Type

	list of tuple of (int, int)

Examples

181from graphtransliterator import DirectedGraph
182DirectedGraph()

<graphtransliterator.graphs.DirectedGraph at 0x7ff8d83354b0>

	
add_edge(head, tail, edge_data=None)

	Add an edge to a graph and return its attributes as dict.

	Parameters

	
	head (int) – Index of head of edge

	tail (int) – Index of tail of edge

	edge_data (dict, default {}) – Edge data

	Returns

	Data of created edge

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Invalid head or tail, or edge_data is not a dict.

Examples

183g = DirectedGraph()
184g.add_node()

(0, {})

185g.add_node()

(1, {})

186g.add_edge(0,1, {'data_key_1': 'some edge data here'})

{'data_key_1': 'some edge data here'}

187g.edge

{0: {1: {'data_key_1': 'some edge data here'}}}

	
add_node(node_data=None)

	Create node and return (int, dict) of node key and object.

	Parameters

	node_data (dict, default {}) – Data to be stored in created node

	Returns

	Index of created node and its data

	Return type

	tuple of (int, dict)

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – node_data is not a dict

Examples

188g = DirectedGraph()
189g.add_node()

(0, {})

190g.add_node({'datakey1': 'data value'})

(1, {'datakey1': 'data value'})

191g.node

[{}, {'datakey1': 'data value'}]

	
class graphtransliterator.VisitLoggingDirectedGraph(graph)

	A DirectedGraph that logs visits to all nodes and edges.

Used to measure the coverage of tests for bundled transliterators.

	
check_coverage(raise_exception=True)

	Checks that all nodes and edges are visited.

	Parameters

	raise_exception (bool, default) – Raise IncompleteGraphCoverageException (default, True)

	Raises

	IncompleteGraphCoverageException – Not all nodes/edges of a graph have been visited.

	
clear_visited()

	Clear all visited attributes on nodes and edges.

Rule Classes

	
class graphtransliterator.TransliterationRule(production, prev_classes, prev_tokens, tokens, next_tokens, next_classes, cost)

	A transliteration rule containing the specific match conditions and
string output to be produced, as well as the rule’s cost.

	
production

	Output produced on match of rule

	Type

	str

	
prev_classes

	List of previous token classes to be matched before tokens or,
if they exist, prev_tokens

	Type

	list of str, or None

	
prev_tokens

	List of tokens to be matched before tokens

	Type

	list of str, or None

	
tokens

	List of tokens to match

	Type

	list of str

	
next_tokens

	List of tokens to match after tokens

	Type

	list of str, or None

	
next_classes

	List of tokens to match after tokens or, if they exist, next_tokens

	Type

	list of str, or None

	
cost

	Cost of the rule, where less specific rules are more costly

	Type

	float

	
class graphtransliterator.OnMatchRule(prev_classes, next_classes, production)

	Rules about adding text between certain combinations of matched rules.

When a translation rule has been found and before its production is added
to the output, the productions string of an OnMatch rule is added if
previously matched tokens and current tokens are of the specified classes.

	
prev_classes

	List of previously matched token classes required

	Type

	list of str

	
next_classes

	List of current and following token classes required

	Type

	list of str

	
production

	String to added before current rule

	Type

	str

	
class graphtransliterator.WhitespaceRules(default, token_class, consolidate)

	Whitespace rules of GraphTransliterator.

	
default

	Default whitespace token

	Type

	str

	
token_class

	Whitespace token class

	Type

	str

	
consolidate

	Consolidate consecutive whitespace tokens and render as a single
instance of the specified default whitespace token.

	Type

	bool

Exceptions

	
exception graphtransliterator.GraphTransliteratorException

	Base exception class. All Graph Transliterator-specific exceptions should
subclass this class.

	
exception graphtransliterator.AmbiguousTransliterationRulesException

	Raised when multiple transliteration rules can match the same pattern.
Details of ambiguities are given in a logging.warning() [https://docs.python.org/3/library/logging.html#logging.warning].

	
exception graphtransliterator.NoMatchingTransliterationRuleException

	Raised when no transliteration rule can be matched at a particular
location in the input string’s tokens. Details of the location are given
in a logging.warning() [https://docs.python.org/3/library/logging.html#logging.warning].

	
exception graphtransliterator.UnrecognizableInputTokenException

	Raised when a character in the input string does not correspond to any
tokens in the GraphTransliterator’s token settings. Details of the location
are given in a logging.warning() [https://docs.python.org/3/library/logging.html#logging.warning].

Schemas

	
class graphtransliterator.DirectedGraphSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for DirectedGraph.

Validates graph somewhat rigorously.

	
class graphtransliterator.EasyReadingSettingsSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for easy reading settings.

Provides initial validation based on easy reading format.

	
class graphtransliterator.GraphTransliteratorSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for Graph Transliterator.

	
class graphtransliterator.OnMatchRuleSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for OnMatchRule.

	
class graphtransliterator.SettingsSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for settings in dictionary format.

Performs validation.

	
class graphtransliterator.TransliterationRuleSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for TransliterationRule.

	
class graphtransliterator.WhitespaceDictSettingsSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for Whitespace definition as a dict.

	
class graphtransliterator.WhitespaceSettingsSchema(*, only: Optional[Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, exclude: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), many: bool [https://docs.python.org/3/library/functions.html#bool] = False, context: Optional[Dict] = None, load_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), dump_only: Union[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = (), partial: Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], Set[str [https://docs.python.org/3/library/stdtypes.html#str]]] = False, unknown: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Schema for Whitespace definition that loads as WhitespaceRules.

Credits

Development Lead

	
	Sean Pue @seanpue [https://github.com/seanpue] <pue@msu.edu>

Contributors

	Valentino Constantinou @vc1492a [https://github.com/vc1492a]

	Rebecca Sutton Koeser @rlskoeser [https://github.com/rlskoeser]

Acknowledgements

Software development was supported by an Andrew W. Mellon Foundation New
Directions Fellowship (Grant Number 11600613) and by matching funds provided by
the College of Arts and Letters, Michigan State University.

Kudos

Graph Transliterator’s developers acknowledge the following open-access projects, which
have been particularly helpful in Graph Transliterator’s development. These include:
astropy [https://docs.astropy.org/en/stable/development/docrules.html] (guide for documentation style expanding on numpy [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard]), click [https://github.com/pallets/click]
(command line interface), contributor_covenant [https://contributor-covenant.org] (basis for the code of conduct),
cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] (initial Python module template), jupyter-sphinx [https://github.com/jupyter/jupyter-sphinx]
(renderer of live code results in the docs), and marshmallow [https://github.com/marshmallow-code/marshmallow] (object
serializer/deserializer).

Those from which code/text has been adopted are mentioned in NOTICE [https://github.com/seanpue/graphtransliterator/blob/master/NOTICE].

[~ Dependencies scanned by PyUp.io ~]

History

[Unreleased - Maybe]

	save match location in tokenize using token_details

	allow insertion of transliteration error messages into output

	fix Devanagari output in Sphinx-generated Latex PDF

	add translated messages

	add precommit to run black

	add static typing with mypy

	adjust IncorrectVersionException to only consider major, minor versioning not patch

	Adjust CSS for CLI output in docs

[To do]

	Add on/off switch characters

1.2.2 (2021-08-11)

	updated CONTRIBUTING.rst for new Python versions

	added github actions to publish to pypi and testpypi

	shifted to github CI

	updated dependencies

	fixed tox.ini

	updated schema.py error message

	updated docs/conf.py for jupyter_sphinx

1.2.1 (2020-10-29)

	updated docs/conf.py for jupyter_sphinx

1.2.0 (2020-05-13)

	changes to bundled.py and cli.py with dump-tests command

	updated cli.rst

1.1.2 (2020-04-29)

	updated LICENSE, minor code updates, security updates

1.1.1 (2020-04-21)

	Added test to check compressed dump is uniform

	Fixed sorting of class id in compressed dump to make JSON output uniform

	Added Python 3.8 support

1.1.0 (2020-01-10)

	Added pre-commit hook to rebuild bundled transliterators with bump2version

	remove to_dict from DirectedGraph, since it is handled through Marshmallow schemas.

	Adjust documentation to mention compression.

	added list-bundled CLI command

	added –regex/-re flag to graphtransliterator make-json CLI command to allow regular
expressions

	removed coverage keyword from GraphTransliterator

	reorganized core.py

	converted from_dict, from_easyreading_dict, from_yaml, and from_yaml_file to static
methods from class methods

	moved ambiguity-checking functions to ambiguity.py and tests to test_ambiguity.py

	set three levels of compression: 0 (Human-readable), 1 (no data loss, includes graph),
2 (no data loss, and no graph); 2 is fastest and set to default.

	set check_ambiguity to read keyword during JSON load

	allowed empty string productions during JSON compression

	added compression.py with decompress_config() and compress_config() to compress JSON

	added tests/test_compression.py to test compression.py

	added sorting of edge_list to DirectedGraph to allow dumped JSON comparison in tests

	adjusted _tokenizer_string_from() to sort by length then string for JSON comparison

1.0.7 (2019-12-22)

	added IncorrectVersionException, if serialized version being
loaded is from a later version than the current graphtransliterator
version

	added automatic edge_list creation if edge parameter in DirectedGraph

	added fields to and started using NodeDataSchema

	added pre_dump to GraphTransliteratorSchema, NodeDataSchema to remove empty values
to compress Serialization

	removed rule from graph leaves and updated docs accordingly

1.0.6 (2019-12-15)

	fixed serialization of graph node indexes as integer rather than strings

1.0.5 (2019-12-14)

	added JOSS citation to README

	added –version to cli

	removed some asserts

	removed rule dictionaries from graph leaves to compress and simplify serialization

1.0.4 (2019-11-30)

	updates to docs

1.0.3 (2019-11-30)

	update to paper

1.0.2 (2019-11-30)

	updates for Zenodo

1.0.1 (2019-11-29)

	updated requirements_dev.txt

1.0.0 (2019-11-26)

	removed extraneous files

	updated development status in setup.py

	set to current jupyter-sphinx

0.4.10 (2019-11-04)

	fixed typo in requirements_dev.txt

0.4.9 (2019-11-04)

	quick fix to requirements_dev.txt due to readthedocs problem with not reading changes

0.4.8 (2019-11-04)

	twine update to 2.0

0.4.7 (2019-11-04)

	temp switch back to dev version of jupyter-sphinx for overflow error

	Dropped Python 3.5 support for twine 2.0 update

0.4.6 (2019-11-04)

	switched to latest jupyter-sphinx

	travis adjustments

0.4.5 (2019-10-31)

	Adjusted make-json CLI test to restore original example.json

0.4.4 (2019-10-24)

	moved README.rst to include in index.rst

	fixed error in advanced_tutorial.rst

0.4.3 (2019-10-24)

	fixed requirements_dev.txt

0.4.2 (2019-10-24)

	fixed README.rst for PyPI

0.4.1 (2019-10-24)

	fixed links to code in docs

	fixed link to NOTICE

	added acknowledgements

0.4.0 (2019-10-24)

	added bundled transliterators to api.rst

	adjustments to usage.rst

	adjustments to tutorial.rst

	fixes to docs (linking module)

	adjustments to advanced_tutorial.rst

	adjustments to README.rst

	fixes to AUTHORS.rst

	added kudos.rst to docs to acknowledge inspirational projects

	added advanced tutorial on bundling a transliterator.

	added cli.rst to docs

	fixed regex in get_unicode_char to allow hyphen

	added cli.py and adjusted setup.py

	updated tutorial

	added statement of need to README. Thanks @rlskoeser [https://github.com/rlskoeser].

	Removed continue-linenos jupyter-sphinx directive in favor of configuration settings

	added preface to documentation source files with links to production version, etc.
Thanks @rlskoeser [https://github.com/rlskoeser].

	added custom css for jupyter-sphinx cells

	added jupyter-sphinx documentation with line numbering

	removed pkg_resources as source for version due to problem with loading from
pythonpath for jupyter-sphinx in readthedocs, instead used __version__

	adjust path in docs/conf.py to fix docs error

	added bundled/schemas.py with MetadataSchema for bundled transliterator metadata

	added coverage to from_dict()

	added allow_none in onmatch_rules in GraphTransliteratorSchema

	adjusted core.py so that all edges are visited during search, even if no constraints

	removed _count_of_tokens() in favor of cost

	added IncompleteGraphCoverageException to exceptions.py

	added VisitLoggingDirectedGraph to graphs.py

	added tests/test_transliterator.py

	partially updated transliterators/README.rst

	removed transliterators/sample/*

	added yaml and json to package_data in setup.py

	Added to core.py class CoverageTransliterator, which tracks visits to
edges, nodes, and onmatch rules, and allows clearing of visits and checking of
coverage, used to make sure tests are comprehensive

	created test/test_coverage.py to test CoverageTransliterator

	created transliterators/bundled.py with class Bundled for bundled transliterators

	added load_from_YAML() and load_from_JSON() initializers to Bundled to load from
bundled YAML (for development) and JSON (for speed)

	added load_yaml_tests(), run_yaml_tests(), and run_tests() to Bundled

	created transliterators/__init__.py that finds bundled transliterators in subdirectory
and adds them to graphtransliterators.transliterators namespace

	added iter_names() and iter_transliterators() to transliterators/__init__.py

	created test/test_transliterator.py to check bundled transliterator loading and
functions

	created in transliterators/example/ __init__.py, example.json, example.yaml

	created in transliterators/example/tests test_example.py and example_tests.yaml

0.3.8 (2019-09-18)

	fixed load() docstring example

	updated check_ambiguity() to use cost

0.3.7 (2019-09-17)

	Adjusted docs to show readme as first page

	Added sample graph and code to README.rst

	moved images in docs to _static

0.3.6 (2019-09-17)

	adjusted installation.rst renaming libraries to modules

	updated paper and bibliography.

0.3.5 (2019-09-15)

	flake8 fix for core.py

	fixed bug in schemas.py whereby, during load(), DirectedGraphSchema() was modifying
input settings

	added tests for modifications to settings by load()

	adjusted DirectedGraphSchema to allow for compacted transliteration rule settings

	adjusted GraphTransliteratorSchema to allow for compacted settings

	added tests to confirm all optional fields passed to load() are really optional

	added ValidationError if onmatch_rules_lookup present without onmatch_rules

	adjusted DirectedGraphSchema edge definition to remove str if loading from JSON

	added more rigorous schema definitions for edge_list and node in DirectedGraphSchema

	fixed flake8 warning in graphs.py

	adjusted docstrings in core.py for dump(), dumps(), load(), and loads()

0.3.4 (2019-09-15)

	added sphinx-issues and settings to requirements_dev.txt, docs/conf.py

	added .readthedocs.yml configuration file to accommodate sphinx-issues

	removed history from setup.py due to sphinx-issues

	fixed GraphTransliteratorException import in __init__.py

	added docs/_static directory

	fixed emphasis error and duplicate object description in docs/usages.rst

	fixed docstring in core.py

	added python versions badge to README.rst (openjournals/joss-reviews#1717 [https://github.com/openjournals/joss-reviews/issues/1717]).
Thanks @vc1492a [https://github.com/vc1492a].

	added NOTICE listing licenses of open-source text and code

	added Dependencies information to docs/install.rst
(openjournals/joss-reviews#1717 [https://github.com/openjournals/joss-reviews/issues/1717]). Thanks @vc1492a [https://github.com/vc1492a].

	updated AUTHORS.rst

	minor updates to README.rst

0.3.3 (2019-09-14)

	fixed missing marshmallow dependency (#47 [https://github.com/seanpue/graphtransliterator/pull/47]). Thanks @vc1492a [https://github.com/vc1492a].

	removed unused code from test (#47 [https://github.com/seanpue/graphtransliterator/pull/47]). Thanks @vc1492a [https://github.com/vc1492a].

	removed cerberus dependency

0.3.2 (2019-08-30)

	fixed error in README.rst

0.3.1 (2019-08-29)

	adjustments to README.rst

	cleanup in initialize.py and core.py

	fix to docs/api.rst

	adjusted setup.cfg for bumpversion of core.py

	adjusted requirements.txt

	removed note about namedtuple in dump docs

	adjusted docs (api.rst, etc.)

0.3.0 (2019-08-23)

	Removed _tokens_of() from init

	Removed serialize()

	Added load() to GraphTransliterator, without ambiguity checking

	Added dump() and dumps() to GraphTransliterator to export configuration

	renamed _tokenizer_from() to _tokenizer_pattern_from(), and so that regex is compiled
on load and passed as pattern string (tokenizer_pattern)

	added settings parameters to DirectedGraph

	added OnMatchRule as namedtuple for consistency

	added new GraphTransliterator.from_dict(), which validates from_yaml()

	renamed GraphTransliterator.from_dict() to GraphTransliterator.from_easyreading_dict()

	added schemas.py

	removed validate.py

	removed cerberus and added marshmallow to validate.py

	adjusted tests

	Removed check_settings parameter

0.2.14 (2019-08-15)

	minor code cleanup

	removed yaml from validate.py

0.2.13 (2019-08-03)

	changed setup.cfg for double quotes in bumpversion due to Black formatting of setup.py

	added version test

0.2.12 (2019-08-03)

	fixed version error in setup.py

0.2.11 (2019-08-03)

	travis issue

0.2.10 (2019-08-03)

	fixed test for version not working on travis

0.2.9 (2019-08-03)

	Used Black code formatter

	Adjusted tox.ini, contributing.rst

	Set development status to Beta in setup.py

	Added black badge to README.rst

	Fixed comments and minor changes in initialize.py

0.2.8 (2019-07-30)

	Fixed ambiguity check if no rules present

	Updates to README.rst

0.2.7 (2019-07-28)

	Modified docs/conf.py

	Modified equation in docs/usage.rst and paper/paper.md to fix doc build

0.2.6 (2019-07-28)

	Fixes to README.rst, usage.rst, paper.md, and tutorial.rst

	Modifications to core.py documentation

0.2.5 (2019-07-24)

	Fixes to HISTORY.rst and README.rst

	100% test coverage.

	Added draft of paper.

	Added graphtransliterator_version to serialize().

0.2.4 (2019-07-23)

	minor changes to readme

0.2.3 (2019-07-23)

	added xenial to travis.yml

0.2.2 (2019-07-23)

	added CI

0.2.1 (2019-07-23)

	fixed HISTORY.rst for PyPI

0.2.0 (2019-07-23)

	Fixed module naming in docs using __module__.

	Converted DirectedGraph nodes to a list.

	Added Code of Conduct.

	Added GraphTransliterator class.

	Updated module dependencies.

	Added requirements.txt

	Added check_settings parameter to skip validating settings.

	Added tests for ambiguity and check_ambiguity parameter.

	Changed name to Graph Transliterator in docs.

	Created core.py, validate.py, process.py, rules.py, initialize.py,
exceptions.py, graphs.py

	Added ignore_errors property and setter for transliteration
exceptions (UnrecognizableInputToken, NoMatchingTransliterationRule)

	Added logging to graphtransliterator

	Added positive cost function based on number of matched tokens in rule

	added metadata field

	added documentation

0.1.1 (2019-05-30)

	Adjusted copyright in docs.

	Removed Python 2 support.

0.1.0 (2019-05-30)

	First release on PyPI.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphtransliterator	

 	
 	
 graphtransliterator.transliterators	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	add_edge() (graphtransliterator.DirectedGraph method)

 	
 	add_node() (graphtransliterator.DirectedGraph method)

 	AmbiguousTransliterationRulesException

B

 	
 	Bundled (class in graphtransliterator.transliterators)

C

 	
 	check_coverage() (graphtransliterator.CoverageTransliterator method)

 	(graphtransliterator.VisitLoggingDirectedGraph method)

 	check_onmatchrules_coverage() (graphtransliterator.CoverageTransliterator method)

 	clear_visited() (graphtransliterator.CoverageTransliterator method)

 	(graphtransliterator.VisitLoggingDirectedGraph method)

 	
 	consolidate (graphtransliterator.WhitespaceRules attribute)

 	cost (graphtransliterator.TransliterationRule attribute)

 	CoverageTransliterator (class in graphtransliterator)

D

 	
 	default (graphtransliterator.WhitespaceRules attribute)

 	DirectedGraph (class in graphtransliterator)

 	DirectedGraphSchema (class in graphtransliterator)

 	
 	directory (graphtransliterator.transliterators.Bundled property)

 	dump() (graphtransliterator.GraphTransliterator method)

 	dumps() (graphtransliterator.GraphTransliterator method)

E

 	
 	EasyReadingSettingsSchema (class in graphtransliterator)

 	edge (graphtransliterator.DirectedGraph attribute)

 	
 	edge_list (graphtransliterator.DirectedGraph attribute)

 	Example (class in graphtransliterator.transliterators)

F

 	
 	from_dict() (graphtransliterator.GraphTransliterator static method)

 	from_easyreading_dict() (graphtransliterator.GraphTransliterator static method)

 	from_JSON() (graphtransliterator.transliterators.Bundled method)

 	
 	from_yaml() (graphtransliterator.GraphTransliterator static method)

 	from_YAML() (graphtransliterator.transliterators.Bundled method)

 	from_yaml_file() (graphtransliterator.GraphTransliterator static method)

G

 	
 	generate_yaml_tests() (graphtransliterator.transliterators.Bundled method)

 	graph (graphtransliterator.GraphTransliterator property)

 	
 graphtransliterator

 	module

 	GraphTransliterator (class in graphtransliterator)

 	
 	
 graphtransliterator.transliterators

 	module

 	graphtransliterator_version (graphtransliterator.GraphTransliterator property)

 	GraphTransliteratorException

 	GraphTransliteratorSchema (class in graphtransliterator)

I

 	
 	ignore_errors (graphtransliterator.GraphTransliterator property)

 	iter_names() (in module graphtransliterator.transliterators)

 	
 	iter_transliterators() (in module graphtransliterator.transliterators)

 	ITRANSDevanagariToUnicode (class in graphtransliterator.transliterators)

L

 	
 	last_input_tokens (graphtransliterator.GraphTransliterator property)

 	last_matched_rule_tokens (graphtransliterator.GraphTransliterator property)

 	last_matched_rules (graphtransliterator.GraphTransliterator property)

 	
 	load() (graphtransliterator.GraphTransliterator static method)

 	load_yaml_tests() (graphtransliterator.transliterators.Bundled method)

 	loads() (graphtransliterator.GraphTransliterator static method)

M

 	
 	match_at() (graphtransliterator.GraphTransliterator method)

 	metadata (graphtransliterator.GraphTransliterator property)

 	MetadataSchema (class in graphtransliterator.transliterators)

 	
 	
 module

 	graphtransliterator

 	graphtransliterator.transliterators

N

 	
 	name (graphtransliterator.transliterators.Bundled property)

 	new() (graphtransliterator.transliterators.Bundled class method)

 	next_classes (graphtransliterator.OnMatchRule attribute)

 	(graphtransliterator.TransliterationRule attribute)

 	
 	next_tokens (graphtransliterator.TransliterationRule attribute)

 	node (graphtransliterator.DirectedGraph attribute)

 	NoMatchingTransliterationRuleException

O

 	
 	onmatch_rules (graphtransliterator.GraphTransliterator property)

 	onmatch_rules_lookup (graphtransliterator.GraphTransliterator property)

 	
 	OnMatchRule (class in graphtransliterator)

 	OnMatchRuleSchema (class in graphtransliterator)

P

 	
 	prev_classes (graphtransliterator.OnMatchRule attribute)

 	(graphtransliterator.TransliterationRule attribute)

 	prev_tokens (graphtransliterator.TransliterationRule attribute)

 	
 	production (graphtransliterator.OnMatchRule attribute)

 	(graphtransliterator.TransliterationRule attribute)

 	productions (graphtransliterator.GraphTransliterator property)

 	pruned_of() (graphtransliterator.GraphTransliterator method)

R

 	
 	rules (graphtransliterator.GraphTransliterator property)

 	
 	run_tests() (graphtransliterator.transliterators.Bundled method)

 	run_yaml_tests() (graphtransliterator.transliterators.Bundled method)

S

 	
 	SettingsSchema (class in graphtransliterator)

T

 	
 	token_class (graphtransliterator.WhitespaceRules attribute)

 	tokenize() (graphtransliterator.GraphTransliterator method)

 	tokenizer_pattern (graphtransliterator.GraphTransliterator property)

 	tokens (graphtransliterator.GraphTransliterator property)

 	(graphtransliterator.TransliterationRule attribute)

 	
 	tokens_by_class (graphtransliterator.GraphTransliterator property)

 	transliterate() (graphtransliterator.GraphTransliterator method)

 	TransliterationRule (class in graphtransliterator)

 	TransliterationRuleSchema (class in graphtransliterator)

U

 	
 	UnrecognizableInputTokenException

V

 	
 	VisitLoggingDirectedGraph (class in graphtransliterator)

W

 	
 	whitespace (graphtransliterator.GraphTransliterator property)

 	WhitespaceDictSettingsSchema (class in graphtransliterator)

 	
 	WhitespaceRules (class in graphtransliterator)

 	WhitespaceSettingsSchema (class in graphtransliterator)

Y

 	
 	yaml_tests_filen (graphtransliterator.transliterators.Bundled property)

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies within all project spaces, and it also applies when
an individual is representing the project or its community in public spaces.
Examples of representing a project or community include using an official
project e-mail address, posting via an official social media account, or acting
as an appointed representative at an online or offline event. Representation of
a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at pue@msu.edu. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

 _static/minus.png

_static/plus.png

_static/sample_graph.png

_images/figure1.png

nav.xhtml

 Table of Contents

 		
 Graph Transliterator

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Required modules

 		
 Usage

 		
 Overview

 		
 Configuration

 		
 Initialization

 		
 Input Tokens and Token Class Settings

 		
 Transliteration Rules

 		
 Whitespace Settings

 		
 On Match Rules

 		
 Metadata

 		
 Unicode Support

 		
 Configuring Directly

 		
 Ambiguity Checking

 		
 Setup Validation

 		
 Transliteration and Its Exceptions

 		
 Unrecognizable Input Token

 		
 No Matching Transliteration Rule

 		
 Additional Methods

 		
 Serialization and Deserialization

 		
 Matching at an Index

 		
 Details of Matches

 		
 Pruning of Rules

 		
 Internal Graph

 		
 DirectedGraph

 		
 Nodes

 		
 Edges

 		
 Search and Preprocessing

 		
 Bundled Transliterators

 		
 Test Coverage of Bundled Transliterators

 		
 Class Structure and Naming Conventions

 		
 Metadata Requirements

 		
 Command Line Interface

 		
 Dump

 		
 Dump Tests

 		
 Generate Tests

 		
 List Bundled Transliterators

 		
 Make JSON of Bundled Transliterator(s)

 		
 Test

 		
 Transliterate

 		
 Tutorial: Using GraphTransliterator

 		
 Tutorial Overview

 		
 Configuring

 		
 Token Definitions

 		
 Transliteration Rule Definitions

 		
 On Match Rule Definitions

 		
 Whitespace Definitions

 		
 Metadata Definitions

 		
 Creating a Transliterator

 		
 Transliterating

 		
 Other Information

 		
 Advanced Tutorial: Bundling a Transliterator

 		
 Git Basics: Fork, Branch, Sync, Commit

 		
 Fork

 		
 Branch

 		
 Sync

 		
 Commit

 		
 Adding A Transliterator

 		
 YAML File

 		
 JSON File

 		
 __init__.py

 		
 Tests

 		
 Testing the Transliterator

 		
 Pushing Your Transliterator

 		
 Contributing

 		
 Contributor Code of Conduct

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Add Transliterators

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 API Reference

 		
 Core Classes

 		
 Bundled Transliterators

 		
 graphtransliterator.transliterators

 		
 Graph Classes

 		
 Rule Classes

 		
 Exceptions

 		
 Schemas

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Acknowledgements

 		
 Kudos

 		
 History

 		
 [Unreleased - Maybe]

 		
 [To do]

 		
 1.2.2 (2021-08-11)

 		
 1.2.1 (2020-10-29)

 		
 1.2.0 (2020-05-13)

 		
 1.1.2 (2020-04-29)

 		
 1.1.1 (2020-04-21)

 		
 1.1.0 (2020-01-10)

 		
 1.0.7 (2019-12-22)

 		
 1.0.6 (2019-12-15)

 		
 1.0.5 (2019-12-14)

 		
 1.0.4 (2019-11-30)

 		
 1.0.3 (2019-11-30)

 		
 1.0.2 (2019-11-30)

 		
 1.0.1 (2019-11-29)

 		
 1.0.0 (2019-11-26)

 		
 0.4.10 (2019-11-04)

 		
 0.4.9 (2019-11-04)

 		
 0.4.8 (2019-11-04)

 		
 0.4.7 (2019-11-04)

 		
 0.4.6 (2019-11-04)

 		
 0.4.5 (2019-10-31)

 		
 0.4.4 (2019-10-24)

 		
 0.4.3 (2019-10-24)

 		
 0.4.2 (2019-10-24)

 		
 0.4.1 (2019-10-24)

 		
 0.4.0 (2019-10-24)

 		
 0.3.8 (2019-09-18)

 		
 0.3.7 (2019-09-17)

 		
 0.3.6 (2019-09-17)

 		
 0.3.5 (2019-09-15)

 		
 0.3.4 (2019-09-15)

 		
 0.3.3 (2019-09-14)

 		
 0.3.2 (2019-08-30)

 		
 0.3.1 (2019-08-29)

 		
 0.3.0 (2019-08-23)

 		
 0.2.14 (2019-08-15)

 		
 0.2.13 (2019-08-03)

 		
 0.2.12 (2019-08-03)

 		
 0.2.11 (2019-08-03)

 		
 0.2.10 (2019-08-03)

 		
 0.2.9 (2019-08-03)

 		
 0.2.8 (2019-07-30)

 		
 0.2.7 (2019-07-28)

 		
 0.2.6 (2019-07-28)

 		
 0.2.5 (2019-07-24)

 		
 0.2.4 (2019-07-23)

 		
 0.2.3 (2019-07-23)

 		
 0.2.2 (2019-07-23)

 		
 0.2.1 (2019-07-23)

 		
 0.2.0 (2019-07-23)

 		
 0.1.1 (2019-05-30)

 		
 0.1.0 (2019-05-30)

_images/sample_graph.png

_static/figure1.png

_static/file.png

