Graph Transliterator Documentation
Release 1.2.2

A. Sean Pue

Aug 11, 2021

CONTENTS

1 Transliteration... What? Why? 3
2 Features 5
3 Sample Code and Graph 7
3.1 GetItNOW . . . o e e e 7
3.2 CHALION . . v v v v s e 7
3.3 Indicesand tables e e e e e e e 83
Python Module Index 85
Index 87

Graph Transliterator Documentation, Release 1.2.2

Python S

python Sl | &0 | 3.8

Python S

Dol 10.5281/zencdo. 3058360

JOSS 1021105 oss 71T
A graph-based transliteration tool that lets you convert the symbols of one language or script to those of another using
rules that you define.
¢ Free software: MIT license
¢ Documentation: https://graphtransliterator.readthedocs.io

¢ Repository: https://github.com/seanpue/graphtransliterator

CONTENTS 1

https://pypi.python.org/pypi/graphtransliterator
https://travis-ci.org/seanpue/graphtransliterator
https://graphtransliterator.readthedocs.io/en/latest/?badge=latest
https://doi.org/10.5281/zenodo.3558365
https://doi.org/10.21105/joss.01717
https://graphtransliterator.readthedocs.io
https://github.com/seanpue/graphtransliterator

Graph Transliterator Documentation, Release 1.2.2

2 CONTENTS

CHAPTER
ONE

TRANSLITERATION... WHAT? WHY?

Moving text or data from one script or encoding to another is a common problem:

¢ Many languages are written in multiple scripts, and many people can only read one of them. Moving between them
can be a complex but necessary task in order to make texts accessible.

¢ The identification of names and locations, as well as machine translation, benefit from transliteration.
 Library systems often require metadata be in particular forms of romanization in addition to the original script.
* Linguists need to move between different methods of phonetic transcription.

¢ Documents in legacy fonts must now be converted to contemporary Unicode ones.

* Complex-script languages are frequently approached in natural language processing and in digital humanities
research through transliteration, as it provides disambiguating information about pronunciation, morphological
boundaries, and unwritten elements not present in the original script.

Graph Transliterator abstracts transliteration, offering an “easy reading” method for developing transliterators that does
not require writing a complex program. It also contains bundled transliterators that are rigorously tested. These can be
expanded to handle many transliteration tasks.

Contributions are very welcome!

Graph Transliterator Documentation, Release 1.2.2

4 Chapter 1. Transliteration... What? Why?

CHAPTER
TWO

FEATURES

Provides a transliteration tool that can be configured to convert the tokens of an input string into an output string
using:

user-defined types of input tokens and token classes

transliteration rules based on:

* a sequence of input tokens
« specific input tokens that precede or follow the token sequence

« classes of input tokens preceding or following specified tokens

“‘on match” rules for output to be inserted between transliteration rules involving particular token classes

defined rules for whitespace, including its optional consolidation

Can be setup using:
— an “easy reading” YAML format that lets you quickly craft settings for the transliteration tool
— aJSON dump of a transliterator (quicker!)
— “direct” settings, perhaps passed programmatically, using a dictionary

Automatically orders rules by the number of tokens in a transliteration rule

Checks for ambiguity in transliteration rules

Can provide details about each transliteration rule match

Allows optional matching of all possible rules in a particular location

Permits pruning of rules with certain productions

Validates, as well as serializes to and deserializes from JSON and Python data types, using accessible marshmal-
low schemas

Provides full support for Unicode, including Unicode character names in the “easy reading” YAML format

Constructs and uses a directed tree and performs a best-first search to find the most specific transliteration rule
in a given context

Includes bundled transliterators that you can add to hat check for full test coverage of the nodes and edges of the
internal graph and any “on match” rules

Includes a command-line interface to perform transliteration and other tasks

https://yaml.org
https://json.org
https://marshmallow.readthedocs.io/
https://marshmallow.readthedocs.io/

Graph Transliterator Documentation, Release 1.2.2

6 Chapter 2. Features

CHAPTER
THREE

SAMPLE CODE AND GRAPH

from graphtransliterator import GraphTransliterator
GraphTransliterator.from_yaml ("""
tokens:
h: [consonant]
i: [vowel]
" ": [whitespace]
rules:
h: \N{LATIN SMALL LETTER TURNED I}
i: \N{LATIN SMALL LETTER TURNED H}
<whitespace> i: \N{LATIN CAPITAL LETTER TURNED H}
(<whitespace> h) i: \N{LATIN SMALL LETTER TURNED H}!
onmatch_rules:
- <whitespace> + <consonant>: j
whitespace:
default: " "
consolidate: true
token_class: whitespace

metadata:
title: "Upside Down Greeting Transliterator"
version: "1.0.0"

"""y transliterate("hi")

’liq!l

3.1 Get It Now

’$ pip install -U graphtransliterator

3.2 Citation

To cite Graph Transliterator, please use:

Pue, A. Sean (2019). Graph Transliterator: A graph-based transliteration tool. Journal of Open Source
Software, 4(44), 1717, https://doi.org/10.21105/j0ss.01717

https://doi.org/10.21105/joss.01717

Graph Transliterator Documentation, Release 1.2.2

Fig. 1: Sample directed tree created by Graph Transliterator. The rule nodes are in double circles, and foken nodes are
single circles. The numbers are the cost of the particular edge, and less costly edges are searched first. Previous token
classes and previous tokens that must be present are found as constraints on the edges incident to the terminal leaf rule
nodes.

3.2.1 Installation

Stable release

To install Graph Transliterator, run this command in your terminal:

$ pip install graphtransliterator

This is the preferred method to install Graph Transliterator, as it will always install the most recent stable release.
If you don’t have pip installed, this Python installation guide can guide you through the process.
From sources

The sources for Graph Transliterator can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/seanpue/graphtransliterator

Or download the tarball:

’$ curl -OL https://github.com/seanpue/graphtransliterator/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

8 Chapter 3. Sample Code and Graph

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/seanpue/graphtransliterator
https://github.com/seanpue/graphtransliterator/tarball/master

1

S

Graph Transliterator Documentation, Release 1.2.2

Required modules

Graph Transliterator requires three Python modules, click, marshmallow and pyyaml. These modules will be installed
automatically using the methods described above.

3.2.2 Usage

To use Graph Transliterator in a project:

from graphtransliterator import GraphTransliterator

Overview

Graph Transliterator requires that you first configure a GraphTransliterator. Then you can transliterate an input
stringusingtransliterate (). There are a few additional methods that can be used to extract information for specific
use cases, such as details about which rules were matched.

Configuration

Graph Transliterator takes the following parameters:
1. The acceptable types of tokens in the input string as well as any associated token classes.
2. The transliteration rules for the transformation of the input string.
3. Rules for dealing with whitespace.

4. “On match” rules for strings to be inserted in particular contexts right before a transliteration rule’s output is
added (optional).

5. Metadata settings for the transliterator (optional).

Initialization

Defining the rules for transliteration can be difficult, especially when dealing with complex scripts. That is why Graph
Transliterator uses an “easy reading” format that allows you to enter the transliteration rules in the popular YAML for-
mat, either from a string (using from_yaml ()) or by reading from a file or stream (GraphTransliterator.
from_yaml_file ()). You can also initialize from the loaded contents of YAML (GraphTransliterator.
from_easyreading_dict ()).

Here is a quick sample that parameterizes GraphTransliterator using an easy reading YAML string (with com-
ments):

yaml_ = """
tokens:
a: [vowel] # type of token ("a") and its class (vowel)
bb: [consonant, b_class] # type of token ("bb") and its classes (consonant, b_
—~class)
'l [wb] # type of token (" ") and its class ("wb", for wordbreak)
rules:
a: A # transliterate "a" to "A"
bb: B # transliterate "bb" to "B"
a a: <2AS> # transliterate ("a", "a") to "<2AS>"

(continues on next page)

3.2. Citation 9

https://pypi.org/project/click/
https://pypi.org/project/marshmallow/
https://pypi.org/project/PyYAML/
https://yaml.org/

21

22

23

24

25

26

27

28

29

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

ot # transliterate ' ' to ' !
whitespace:
default: " " # default whitespace token
consolidate: false # whitespace should not be consolidated
token_class: wb # whitespace token class
gt_one = GraphTransliterator.from_yaml (yaml_)
gt_one.transliterate('a')

|

A

|

gt_one.transliterate('bb")

B!

|

gt_one.transliterate('aabb')

|

'<2AS>B'

The example above shows a very simple transliterator that replaces the input token “a” with “A”, “bb” with “B”, ” ” with

9 <« 9 9

, and two “a” in a row with “<2AS>". It does not consolidate whitespace, and treats
Tokens contain strings of one or more characters.

Input Tokens and Token Class Settings

as its default whitespace token.

During transliteration, Graph Transliterator first attempts to convert the input string into a list of tokens. This is done

internally using GraphTransliterator.tokenize ():

gt_one.tokenize ('abba')

[l v, 'a', lbbll Iall v 'J

Note that the default whitespace token is added to the start and end of the input tokens.

Tokens can be more than one character, and longer tokens are matched first:

yaml_ = """
tokens:
a: [] # "a" token with no classes
aa: [] # "aa" token with no classes
't [wb] # " " token and its class ("wb", for wordbreak)
rules:

aa: <DOUBLE_A> # transliterate "aa" to "<DOUBLE_A>"
a: <SINGLE_A> # transliterate "a" to "<SINGLE_A>"

whitespace:
default: " " # default whitespace token
consolidate: false # whitespace should not be consolidated
token_class: wb # whitespace token class

nwn

gt_two = GraphTransliterator.from_yaml (yaml_)
gt_two.transliterate('a')

10 Chapter 3. Sample Code and Graph

37

38

39

Graph Transliterator Documentation, Release 1.2.2

'<SINGLE_A>'

gt_two.transliterate('aa')

'<DOUBLE_A>"

’gt_two.transliterate('aaa')

'<DOUBLE_A><SINGLE_A>'

Here the input “aaa” is transliterated as “<DOUBLE_A><SINGLE_A>", as the longer token “aa” is matched before “a”.

Tokens can be assigned zero or more classes. Each class is a string of your choice. These classes are used in transliteration
rules. In YAML they are defined as a dictionary, but internally the rules are stored as a dictionary of token strings keyed
to a set of token classes. They can be accessed using GraphTransliterator.tokens:

gt_two.tokens

’{'a': set (), 'aa': set(), " ': {'wb'}}

Transliteration Rules

Graph Transliterator can handle a variety of transliteration tasks. To do so, it uses transliteration rules that contain match
settings for particular tokens in specific contexts and also a resulting production, or string to be appended to the output
string.

Match Settings

Transliteration rules contain the following parameters (ordered by where they would appear in a list of tokens):
* previous token classes : a list of token classes (optional)
* previous tokens : a list of tokens (optional)
* tokens : a list of tokens
 next tokens : a list of tokens (optional)
* next token classes : a list of token classes (optional)

One or more (tokens) must be matched in a particular location. However, specific tokens can be required before (previous
tokens) or behind (next tokens) those tokens. Additionally, particular token classes can be required before (previous
token classes) and behind (next token classes) all of the specific tokens required (previous tokens, tokens, next tokens).

Depending on their complexity, these match conditions can be entered using the “easy reading” format in the following
ways.

If there are no required lookahead or lookbehind tokens, the rule can be as follows:

rules:
a a: aa # two tokens (a,a), with production "production_aa"

If, in an addition to tokens, there are specific previous or following tokens that must be matched, the rule can be entered
as:

3.2. Citation 11

40

41

Graph Transliterator Documentation, Release 1.2.2

tokens:
a: []
b: []
c: [1]
d: [1
rules:
a (b): a_before_b # matches token 'a' with the next token 'b'
(c¢) a: a_after_c # matches token 'a' when the previous token is 'c'

a (b c): a_before_b_and_c # matches token 'a' when next tokens are 'b' then 'c'
(d) a (b ¢): a_after_d_and_before_b,c # matches the token 'a' after 'd' and.
—~before 'b' and 'c'

Token class names are indicated between angular brackets (“<classname>"). If preceding and following tokens are not
required but classes are, these can be entered as follows:

tokens:
a: []
b: [class_Db]
c: []
Yl [wb]
rules:
c <class_b>: c_after _class_b # match token 'c' before a token of class 'class_b’
<class_b> a: a_before_class_b # match token 'a' after a token of class ‘class_b’
<class_b> a <class_b>: a_between_class_b # match token 'a' between tokens of class
—'class_b'

If token classes must precede or follow specific tokens, these can be entered as:

tokens:
[]
[]
[class_c]
[class_d]
': [wb]
rules:
d (b <class_c>): a_before_b_and_class_c # match token 'd' before 'b' and a token of.
—~class 'class_c'
(<class_c> b) a: a_after_b_and_class_c # match token 'a' after 'b' and a token of._
—class 'class_c'
(<class_c> d) a (b <class_c> <class_d>): x # match 'a' after token of 'class_c' and
—'d'" and before a token of 'class_c' and of 'class_d'
whitespace:
default: ' '
token_class: wb
consolidate: false

-0 o e

Automatic Ordering of Transliteration Rules

Graph Transliterator automatically orders the transliteration rules based on the number of tokens required by the rule. It
picks the rule requiring the longest match in a given context. It does so by assigning a cost to each transliteration rule that
decreases depending on the number of tokens required by the rule. More tokens decreases the cost of a rule causing it to
be matched first:

yaml_ — mmn
tokens:

(continues on next page)

12 Chapter 3. Sample Code and Graph

42

43

44

45

46

47

48

49

50

60

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

a: [1]

b: []

c: [class_of_c]

'l [wb]
rules:

a: <<A>>

a b: <<aAB>>

b: <>

c: <<C>>

<class_of_c> a b: <<AB_after_C>>
whitespace:

default: " "

consolidate: false

token_class: wb
mmw

gt_three = GraphTransliterator.from_yaml (yaml_)

gt_three.transliterate("ab") # should match rule "a b"

"<<AB>>'

’gt_three.transliterate("cab") # should match rules: "c'", and '"<class_of_c> a b"

'<<KC>><<AB_after_C>>'

Internally, Graph Transliterator uses a special TransliterationRule class. These can be accessed using
GraphTransliterator.rules. Rules are sorted by cost, lowest to highest:

61 ’gt_three.rules

[TransliterationRule (production='<<AB_after_C>>', prev_classes=['class_of_c'], prev_
—tokens=None, tokens=['a', 'b'], next_tokens=None, next_classes=None, cost=0.
—32192809488736235),

TransliterationRule (production="'<<AB>>', prev_classes=None, prev_tokens=None,.
—tokens=["'a', 'b'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
TransliterationRule (production="'<<A>>"', prev_classes=None, prev_tokens=None, tokens=|[
—'a'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
TransliterationRule (production='<>', prev_classes=None, prev_tokens=None, tokens=]
—'b'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
TransliterationRule (production="'<<C>>"', prev_classes=None, prev_tokens=None, tokens=|[
—'c'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
TransliterationRule (production='_", prev_classes=None, prev_tokens=None, tokens=["

— '], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

3.2. Citation 13

66

67

68

69

70

71

72

73

74

75

76

77

78

80

Graph Transliterator Documentation, Release 1.2.2

Whitespace Settings

Whitespace is often very important in transliteration tasks, as the form of many letters may change at the start or end
of words, as in the right-to-left Perso-Arabic and left-to-right Indic scripts. Therefore, Graph Transliterator requires the
following whitespace settings:

¢ the default whitespace token
« the whitespace token class
» whether or not to consolidate whitespace

A whitespace token and token class must be defined for any Graph Transliterator. A whitespace character is added tem-
porarily to the start and end of the input tokens during the transliteration process.

The consolidate option may be useful in particular transliteration tasks. It replaces any sequential whitespace tokens
in the input string with the default whitespace character. At the start and end of input, it removes any whitespace:

yaml_ = """

tokens:
a: []
' [wb]

rules:
<wb> a: _A
a <wb>: A_
<wb> a <wb>: _A_

a: a

whitespace:
default: " " # default whitespace token
consolidate: true # whitespace should be consolidated
token_class: wb # whitespace token class

nwn

gt = GraphTransliterator.from_yaml (yaml_)

gt.transliterate('a') # whitespace present at start of string

’ |l A 1

’gt.transliterate('aa') # whitespace present at start and end of string

’ Al AA Al

’gt.transliterate(' a') # consolidate removes whitespace at start of string
’ |l A '

’gt.transliterate('a ") # consolidate removes whitespace at end of string

’ Al A '

Whitespace settings are stored internally as WhitespaceRules and can be accessed using
GraphTransliterator.whitespace:

’gt.whitespace

14 Chapter 3. Sample Code and Graph

89

90

91

92

93

94

95

96

97

98

100

101

102

103

104

105

Graph Transliterator Documentation, Release 1.2.2

WhitespaceRules (default="' ', token_class='wb', consolidate=True)

On Match Rules

Graph Transliterator allows strings to be inserted right before the productions of transliteration rules. These take as
parameters:

* alist of previous token classes, preceding the location of the transliteration rule match
¢ a list of next token classes, from the index of the transliteration rule match
* a production string to insert

In the easy reading YAML format, the onmatch_rules are a list of dictionaries. The key consists of the token class
names in angular brackets (“<classname>"), and the previous classes to match are separated from the following classes
by a “+”. The production is the value of the dictionary:

yaml_ = """
tokens:
a: [vowel]
'ty [wb]
rules:
a: A
whitespace:
default: " "
consolidate: false
token_class: wb
onmatch_rules:
- <vowel> + <vowel>: ',' # add a comma between vowels
gt = GraphTransliterator.from_yaml (yaml_)
gt.transliterate('aa')

’lA,Al

On Match rules are stored internally as a OnMatchRule and can be accessed using GraphTransliterator.
onmatch_rules:

’gt.onmatch_rules

’[OnMatchRule(prev_classesz['vowel'], next_classes=['vowel'], production=',"')]

Metadata

Graph Transliterator allows for the storage of metadata as another input parameter, metadata. It is a dictionary, and
fields can be added to it:

yaml_ — nnn
tokens:

a: []

(continues on next page)

3.2. Citation 15

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

whitespace:
default: " "
consolidate: false
token_class: wb
metadata:
author: Author McAuthorson
version: 0.1.1
description: A sample Graph Transliterator
mnon
gt = GraphTransliterator.from_yaml (yaml_)
gt .metadata

{'author': 'Author McAuthorson',
'version': '0.1.1",
'description': 'A sample Graph Transliterator'}

Unicode Support

Graph Transliterator allows Unicode characters to be specified by name, including in YAML files, using the format
“AN{UNICODE CHARACTER NAME}” or “\u{####}” (where #### is the hexadecimal character code):

yaml_ = """
tokens:
b: []
c: [1
'ty [wb]
rules:
b: \N{LATIN CAPITAL LETTER B}
c: \u0043 # hexadecimal Unicode character code for 'C'
] L] |
whitespace:
default: " "
consolidate: false
token_class: wb
mnon
gt = GraphTransliterator.from_yaml (yaml_)
gt.transliterate('b'")

'R

’gt.transliterate('c')

[

16 Chapter 3. Sample Code and Graph

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

Graph Transliterator Documentation, Release 1.2.2

Configuring Directly

In addition to using GraphTansliterator.from_yaml () and GraphTransliterator.
from_yaml_file (), Graph Transliterator can also be configured and initialized directly using basic Python
types passed as dictionary to GraphTransliterator.from_dict ()

settings = {

'tokens': {'a': ['vowel'],
tt: ['wb'l),
'rules': [
{'production': 'A', 'tokens': ['a']l},
{'production': ' ', 'tokens': [' ']}],
'onmatch_rules': [

{'prev_classes': ['vowel'],
'next_classes': ['vowel'],
'production': ', '}1,

'whitespace': {

'default': ' ',

'consolidate': False,

'token_class': 'wb'},

'metadata': {
'author': '"Author McAuthorson'}

}
gt = GraphTransliterator.from_dict (settings)
gt.transliterate('a')

A

This feature can be useful if generating a Graph Transliterator using code as opposed to a configuration file.

Ambiguity Checking

Graph Transliterator, by default, will check for ambiguity in its transliteration rules. If two rules of the same cost would
match the same string(s) and those strings would not be matched by a less costly rule, an AmbiguousTransliter—
ationRulesException occurs. Details of all exceptions will be reported as a logging.warning () :

yaml_ = """

tokens:
a: [classl, class?]
b: []
'l [wb]

rules:

<classl> a: A

<class2> a: AA # ambiguous rule

<classl> b: BB

b <class2>: BB # also ambiguous
whitespace:

default: " '

consolidate: True

token_class: wb

nwn

gt = GraphTransliterator.from_yaml (yaml_)
WARNING:root:The pattern [{'a'}, {'a'}, {'b', 'a', ' '}] can be matched by.
—both:

<classl> a

3.2. Citation 17

171

172

173

174

175

176

177

178

179

180

181

182

183

Graph Transliterator Documentation, Release 1.2.2

<class2> a

WARNING:root:The pattern [{'a'}, {'b'}, {'a'}] can be matched by both:
<classl> b
b <class2>

AmbiguousTransliterationRulesException

The warning shows the set of possible previous tokens, matched tokens, and next tokens as three sets.

Ambiguity checking is only necessary when using an untested Graph Transliterator. It can be turned off during initial-
ization. To do so, set the initialization parameter check_ambiguity to False.

Ambiguity checking can also be done on demand using check_for_ambiguity ().

Ambiguity checking is not performed if loading from a serialized GraphTransliterator using
GraphTransliterator.load() or GraphTransliterator.loads ().

Setup Validation

Graph Transliterator validates both the “easy reading” configuration and the direct configuration using the marshmallow
library.

Transliteration and Its Exceptions

The main method of Graph Transliterator is GraphTransliterator.transliterate (). It will return a string:

GraphTransliterator. from_yaml (
rri
tokens:
a: []
" ': [wb]
rules:
a: A

ror. ror

whitespace:
default: ' '
consolidate: True
token_class: wb

"'’y .transliterate("a a")

'AA

Details of transliteration error exceptions will be logged using 1ogging.warning ().

18 Chapter 3. Sample Code and Graph

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

210

211

Graph Transliterator Documentation, Release 1.2.2

Unrecognizable Input Token

Unless the GraphTransliterator is initialized with or has the property ignore_errors set as True,
GraphTransliterator.transliterate () willraise UnrecognizableInputTokenException when
character(s) in the input string do not correspond to any defined types of input tokens. In both cases, there will be a

logging.warning():

from graphtransliterator import GraphTransliterator
yaml_ o nmnmn
tokens:

a: []

whitespace:
default: " "
consolidate: true
token_class: wb

nwn

GraphTransliterator.from_yaml (yaml_) .transliterate("a'!a") # ignore errors=False

WARNING:graphtransliterator:Unrecognizable token ! at pos 1 of a'la

UnrecognizableInputTokenException

GraphTransliterator.from_yaml (yaml_, ignore_errors=True) .transliterate("a'a") #._
—ignore_errors=True

WARNING:graphtransliterator:Unrecognizable token ! at pos 1 of a'la

"AA"

No Matching Transliteration Rule

Another possible error occurs when no transliteration rule can be identified at a particular index in the index string. In
that case, there will be a Logging.warning (). If the parameter ignore_errors is set to True, the token index

will be advanced. Otherwise, there will be a NoMatchingTransliterationRuleException:

yaml_='""
tokens:
a: [1]
b: []
'l [wb]
rules:
a: A
b (a): B
whitespace:
default: ' '
token_class: wb
consolidate: False

(continues on next page)

3.2. Citation

19

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

212

213

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

gt = GraphTransliterator.from_yaml (yaml_)
gt.transliterate ("ab")

WARNING:graphtransliterator:No matching transliteration rule at token pos 2.
%Of [‘ l, lal, VbV, A\l l]

NoMatchingTransliterationRuleException

gt .ignore_errors = True
gt.transliterate ("ab")

WARNING:graphtransliterator:No matching transliteration rule at token pos 2.
‘)Of [‘ l, 'a" |b|,] ']

Additional Methods

Graph Transliterator also offers a few additional methods that may be useful for particular tasks.

Serialization and Deserialization

The settings of a Graph Transliterator can be serialized using GraphTransliterator.dump (), which returns a
dictionary of native Python data types. A JSON string of the same can be accessed using GraphTransliterator.
dumps () . Validation is not performed during a dump.

By default, GraphTransliterator.dumps () will use compression level 2, which removes the internal graph and
indexes tokens and graph node labels. Compression level 1 also indexes tokens and graph node labels and contains the
graph. Compression level 0 is human readable and includes the graph. No information is lost during compression. Level
2, the default, loads the fastest and also has the smallest file size.

A GraphTransliterator can be loaded from serialized settings, e.g. in an API context, using GraphTransliterator.
load () and from JSON data as GraphTransliterator.loads (). Because they are intended to be quick,
neither method performs ambiguity checks or strict validation checking by default.

Serialization can be useful if providing an API or making the configured Graph Transliterator available in other program-
ming languages, e.g. Javascript.

Matching at an Index

The method match_at () is also public. It matches the best transliteration rule at a particular index, which is the rule
that contains the largest number of required tokens. The method also has the option match_all which, if set, returns
all possible transliteration matches at a particular location:

gt = GraphTransliterator.from_yaml('"'
tokens:

(continues on next page)

20 Chapter 3. Sample Code and Graph

226

227

228

229

230

234

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

rules:
a: <A>
a a: <AA>

whitespace:
default: ' '
consolidate: True
token_class: wb

)
tokens = gt.tokenize("aa")
tokens # whitespace added to ends
][' Y,otat, tal,)

’gt.match_at(l, tokens) # returns index to rule

E

’gt.rules[gt.match_at(l, tokens)] # actual rule

TransliterationRule (production="'<AA>"', tokens=["'a

—', 'a'l], next_tokens=None, next_classes=None,

prev_classes=None, prev_tokens=None,
cost=0.4150374992788437)

’gt.match_at(l, tokens, match_all=True) # index to rules, with match_all

10, 1]
[gt.rules[_] for _ in gt.match_at (1, tokens, match_all=True)] # actual rules, with.
—match_all
[TransliterationRule (production='<AA>', prev_classes=None, prev_tokens=None, tokens=|[
—~'a', 'a'l], next_tokens=None, next_classes=None, cost=0.4150374992788437),
TransliterationRule (production="'<A>', prev_classes=None, prev_tokens=None, tokens=['a
'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

Details of Matches

Each Graph Transliterator has a property last_matched_rules whichreturnsalistof TransliterationRule
of the previously matched transliteration rules:

’gt.transliterate("aaa")

"<AA><A>'

gt.last_matched_rules

[TransliterationRule (production="'<AA>",
—~'a', 'a'l], next_tokens=None,
TransliterationRule (production="<A>",
next_tokens=None,

‘*"}I

next_classes=None,

next_classes=None,

prev_classes=None,

prev_classes=None,

prev_tokens=None,

cost=0.4150374992788437),

prev_tokens=None,

cost=0.5849625007211562)]

tokens=|

tokens=["'a

The particular tokens matched by those rules can be accessed using Llast_matched_rule_tokens:

3.2. Citation

21

Graph Transliterator Documentation, Release 1.2.2

237 ’gt.last_matched_rule_tokens

][['a', 'a', ['a'l]

Pruning of Rules

In particular cases, it may be useful to remove certain transliteration rules from a more robustly defined Graph Translit-
erator based on the string output produced by the rules. That can be done using pruned_of ():

238 |gt.rules

[TransliterationRule (production='<AA>', prev_classes=None, prev_tokens=None, tokens=][
—~'a', 'a'], next_tokens=None, next_classes=None, cost=0.4150374992788437),
TransliterationRule (production='"'<A>"', prev_classes=None, prev_tokens=None, tokens=['a
— '], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

239 ’gt.pruned_of('<AA>').rules

[TransliterationRule (production='<A>', prev_classes=None, prev_tokens=None, tokens=['a
— '], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

240 | gt.pruned_of (['<A>', '<AA>']) .rules

’[J

Internal Graph

Graph Transliterator creates a directed tree during its initialization. During calls to transliterate (), it searches
that graph to find the best transliteration match at a particular index in the tokens of the input string.

DirectedGraph

The tree is an instance of DirectedGraph that can be accessed using GraphTransliterator.graph. It con-
tains: a list of nodes, each consisting of a dictionary of attributes; a dictionary of edges keyed between the head and tail
of an edge that contains a dictionary of edge attributes; and finally an edge list.

241 | gt = GraphTransliterator.from_yaml (
242 e

243 tokens:

244 a: []

25 " 'r [wb]

246 rules:

247 a: b

248 <wb> a: B

249 et

250 whitespace:

251 token_class: wb

252 default: ' '

253 consolidate: false

(continues on next page)

22 Chapter 3. Sample Code and Graph

255

258

259

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

mnm ”)

gt .graph

<graphtransliterator.graphs.DirectedGraph at 0x7£94e640b4b0>

Nodes

The tree has nodes of three types: Start, token, and rule. A single Start node, the root, is connected to all other nodes. A
token node corresponds to a token having been matched. Finally, rule nodes are leaf nodes (with no outgoing edges) that

correspond to matched transliteration rules:

gt .graph.node

[{"type': 'Start', 'ordered_children': {'a': [1], ' ': [41}},
{'type': 'token', 'token': 'a', 'ordered_children': {'__rules__': [2, 3]}},
{'type': 'rule', 'rule_key': 0, 'accepting': True, 'ordered_children': {}},
{'type': 'rule', 'rule_key': 1, 'accepting': True, 'ordered_children': {}},
{'type': 'token', 'token': ' ', 'ordered_children': {'__rules__"': [5]}},
{'type': 'rule', 'rule_key': 2, 'accepting': True, 'ordered_children': {}}]
Edges

Edges between these nodes may have different constraints in their attributes:

gt .graph.edge

{0: {1: {'token': 'a', 'cost': 0.4150374992788437},
4: {'token': ' ', 'cost': 0.5849625007211562}},

1: {2: {'cost': 0.4150374992788437, 'constraints': {'prev_classes': ['wb']}},
3: {'cost': 0.5849625007211562}},

4: {5: {'cost': 0.5849625007211562}}}

Before the foken nodes, there is a token constraint on the edge that must be matched before the transliterator can visit the

token node:

’gt.graph.edge[@][l}

’{'token': 'a', 'cost': 0.4150374992788437}

On the edges before rules there may be other constraints, such as certain tokens preceding or following tokens of the

corresponding transliteration rule:

’qt.graph.edge[l][Z}

’{'cost': 0.4150374992788437, 'constraints': {'prev_classes': ['wb']}}

An edge list is also maintained that consists of a tuple of (head, tail):

’gt.graph.edge_list

3.2. Citation

23

Graph Transliterator Documentation, Release 1.2.2

Search and Preprocessing

Graph Transliterator uses a best-first search, implemented using a stack, that finds the transliteration with the the lowest
cost. The cost function is:
1

t(rule) = 1 1
cost(rule) = log, (+ 1 + count_of_tokens_in(rule

7)

It results in a number between 1 and O that lessens as more tokens must be matched. Each edge on the graph has a cost
attribute that is set to the lowest cost transliteration rule following it. When transliterating, Graph Transliterator will try
lower cost edges first and will backtrack if the constraint conditions are not met.

{'prev_classes': ['wb']}
0415) (0.585) |(0.585)

Fig. 2: An example graph created for the simple case of a Graph Transliterator that takes as input two token types, a and
" " (space),and renders " " as " ", and a as b unless it follows a token of class wb (for wordbreak), in which case it
renders a as B. The rule nodes are in double circles, and foken nodes are single circles. The numbers are the cost of the
particular edge, and less costly edges are searched first. Previous token class (prev_classes) constraints are found
on the edge before the leftmost leaf rule node.

To optimize the search, during initialization an ordered_children dictionary is added to each non-leaf node. Its
values are a list of node indexes sorted by cost and keyed by the following foken:

24 Chapter 3. Sample Code and Graph

261

262

S

Graph Transliterator Documentation, Release 1.2.2

’gt.graph.node[O]

’{'type': 'Start', 'ordered_children': {'a': [1], ' ': [4]1}}

Any rule connected to a node is added to each ordered_children. Any rule nodes immediately following the current node
are keyedto __rules_ :

’gt.graph.node[l]

’{'type': 'token', 'token': 'a', 'ordered_children': {'__rules_ ': [2, 31}}

Because of this preprocessing, Graph Transliterator does not need to iterate through all of the outgoing edges of a node
to find the next node to search.

3.2.3 Bundled Transliterators

Note: Python code on this page: bundled. py Jupyter Notebook: bundled. ipynb

Graph Transliterator includes bundled transliterators in a Bundled subclass of GraphTransliterator that can be
used as follows:

import graphtransliterator.transliterators as transliterators
example_transliterator = transliterators.Example ()
example_transliterator.transliterate('a')

A

To access transliterator classes, use the iterator t ransliterators.iter_transliterators():

bundled_iterator = transliterators.iter_transliterators/()
next (bundled_iterator)

<example.Example at Ox7fbdab6ab5f90>

To access the names of transliterator classes, use the iterator transliterators.iter_names ():

bundled_names_iterator = transliterators.iter_names ()
next (bundled_names_iterator)

'Example’

The actual bundled transliterators are submodules of graphtransliterator.transliterators, butthey are
loaded into the namespace of transliterators:

’from graphtransliterator.transliterators import Example

Each instance of Bundled contains a directory attribute:

transliterator = Example ()
transliterator.directory

3.2. Citation 25

Graph Transliterator Documentation, Release 1.2.2

'/home/docs/checkouts/readthedocs.org/user_builds/graphtransliterator/checkouts/
—stable/graphtransliterator/transliterators/example'

Each will contain an easy-reading YAML file that you can view:

tokens:

a: [vowel]

' ': [whitespace]

b: [consonant]
rules:

a: A

b: B

]] :]]

(<consonant> a) b (a <consonant>): "!B!"
onmatch_rules:

- <vowel> + <vowel>: ", 6"
whitespace:

consolidate: False

default: " "

token_class: whitespace
metadata:

name: example
version: 1.0.0
description: "An Example Bundled Transliterator"
url: https://github.com/seanpue/graphtransliterator/tree/master/transliterator/
—sample
author: Author McAuthorson
author_email: author_mcauthorson@msu.edu
license: MIT License
keywords:
- example
project_urls:
Documentation: https://github.com/seanpue/graphtransliterator/tree/master/
—graphtransliterator/transliterators/example
Source: https://github.com/seanpue/graphtransliterator/tree/graphtransliterator/
—transliterators/example
Tracker: https://github.com/seanpue/graphtransliterator/issues

There is also a JSON dump of the transliterator for quick loading:

{"graphtransliterator_version":"1.2.0", "compressed_settings":[["consonant", "vowel",

—"whitespace"], [" ","a","b"], [[2], (1], ([0O]],[["!'B!", (O], 2], ([2],(2],(0],-5],["A",0,0,
-[11,0,0,-11,1("B",0,0,12],0,0,-21," ",0,0,([0],0,0,-211,[" ","whitespace",0],[[[1],
—[11,","1],{"name" : "example", "version":"1.0.0", "description":"An Example Bundled.

—Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/
—transliterator/sample", "author":"Author McAuthorson", "author_email":"author_
—mcauthorson@msu.edu", "license" :"MIT License", "keywords": ["example"], "project_urls":{
—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—graphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}},null]}

26 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

Test Coverage of Bundled Transliterators

Each bundled transliterators requires rigorous testing: every node and edge, as well as any onmatch rules, if applicable,
must be visited. A separate subclass CoverageTransliterator of GraphTransliterator is used during
testing.

It logs visits to nodes, edges, and onmatch rules. The tests are found in a subdirectory of the transliterator named “tests”.
They are in a YAML file consisting of a dictionary keyed from transliteration input to correct output, e.g.:

YAML declaration of tests for bundled Graph Transliterator

These are in the form of a dictionary.

The key is the source text, and the value is the correct transliteration.
|l T . |l |l

a: A

aa: A,A

babab: BA!B!AB

b: B

Once the tests are completed, Graph Transliterator checks that all components of the graph and all of the onmatch rules
have been visited.

Class Structure and Naming Conventions

Each transliterator must include a class definition in a submodule of transliterators.

The class name of each transliterator must be unique and follow camel-case conventions, e.g. SourceToTarget. File and
directory names should, if applicable, be lowercased as source_to_target.

The bundled files should follow this directory structure, where {{source_to_target}} is the name of the transliterator:

transliterators
|— {{source_to_target}}
[F— _ _init_ .py

| If {{source_to_target}}.json

| |— {{source_to_target}}.yaml

L— tests
If test_{{source_to_target}}.py
— {{source_to_target}}_tests.yaml

The bundled transliterator will:

e include both an easy-reading YAML file {{source_to_target}}.yaml and a JSON file
{{source_to_target}}.json.

* have tests in a YAML format consisting of a dictionary keyed from transliteration to correct output in
{{source_to_target}}_tests.yaml. It must include complete test coverage of its graph. Every node
and edge of the graph must be visited during the course of the tests, as well as every on-match rule. Each on-match
rule must be utilized during the course of the tests.

¢ include metadata about the transliterator in its easy-reading YAML file.

* have an optional custom test file test_{{source_to_target.py}}. This is useful during development.

3.2. Citation 27

Graph Transliterator Documentation, Release 1.2.2

Metadata Requirements

Each Bundled transliterator can include the following metadata fields. These fields are a subset of the metadata of
setuptools.

name (str) Name of the transliterator, e.g. “source_to_target”.

version (str, optional) Version of the transliterator. Semantic versioning (https://semver.org) is recommended.
url (str, optional) URL for the transliterator, e.g. github repository.

author (str, optional) Author of the transliterator

author_email (str, optional) E-mail address of the author.

maintainer (s¢r, optional) Name of the maintainer.

maintainer_email (str, optional) E-mail address of the maintainer.

license (str, optional) License of the transliterator. An open-source license is required for inclusion in this project.
keywords (list of str, optional) List of keywords.

project_urls (dict of {str: str}, optional) Dictionary of project URLS, e.g. Documentation, Source, etc.

Metadata is validated using a BundledMetadataSchema found in transliterators.schemas.

To browse metadata, you can use iter_transliterators():

import pprint
transliterator = next (transliterators.iter_transliterators())
pprint.pprint (transliterator.metadata)

{'author': 'Author McAuthorson',
'author_email': 'author_mcauthorson@msu.edu',
'description': 'An Example Bundled Transliterator',
'keywords': ['example'],
'"license': 'MIT License',
'name': 'example',
'project_urls': {'Documentation': 'https://github.com/seanpue/graphtransliterator/
—tree/master/graphtransliterator/transliterators/example’',
'Source': 'https://github.com/seanpue/graphtransliterator/tree/
—graphtransliterator/transliterators/example',
'Tracker': 'https://github.com/seanpue/graphtransliterator/issues'},
'url': 'https://github.com/seanpue/graphtransliterator/tree/master/transliterator/
—sample',
'version': '1.0.0"}

3.2.4 Command Line Interface

Graph Transliterator has a simple command line interface with six commands: dump, dump-tests, generate-
tests, list-bundled, make—-json, test,and transliterate.

$ graphtransliterator —--help

Usage: main [OPTIONS] COMMAND [ARGS]...

Options:
—--version Show the version and exit.

(continues on next page)

28 Chapter 3. Sample Code and Graph

https://semver.org

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

—--help Show this message and exit.
Commands :
dump Dump transliterator as JSON.
dump-tests Dump BUNDLED tests.
generate—-tests Generate tests as YAML.
list-bundled List BUNDLED transliterators.
make—-json Make JSON rules of BUNDLED transliterator(s).
test Test BUNDLED transliterator.
transliterate Transliterate INPUT.
Dump

The dump command will output the specified transliterator as JSON:

$ graphtransliterator dump --help

Usage: dump [OPTIONS]

Dump transliterator as JSON.

Options:

-f, ——from <CHOICE TEXT>... Format (bundled/yaml_file) and source (name or
filename) of transliterator [required]

-ca, —-check-ambiguity / -nca, —--no-check-ambiguity
Check for ambiguity. [default: no-check-
ambiguity]

-cl, ——-compression-level INTEGER
Compression level, from 0 to 2 [default: 2]

—-help Show this message and exit.

It require a ——from or —f option with two arguments. The first argument specifies the format of the transliterator

(bundled or yaml_file) and the second a parameter for that format (the name of the bundled transliterator or the name of
a YAML file).

To load a bundled transliterator, used bundled as the first parameter and give its (class) name, which will be in CamelCase,
as the second:

$ graphtransliterator dump —--from bundled Example

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant", "vowel",
—~"whitespace"], [" ", "a","b"],[[2],[1], (0], [["!'B!",[0O),2],[2],(2],(0],-5],(["a",0,0,
e7r[1,0,0,-21,("B",0,0,12],0,0,-21,(" ",0,0,[0],0,0,-211,[" ","whitespace",01,I[[[1],
—[11,","]1],{"name" : "example", "version":"1.0.0", "description":"An Example Bundled.
—Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/
—transliterator/sample", "author":"Author McAuthorson", "author_email":"author_
—mcauthorson@msu.edu", "license":"MIT License", "keywords": ["example"], "project_urls":{
—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—graphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}},null]}

3.2. Citation 29

Graph Transliterator Documentation, Release 1.2.2

To load from a YAML file, give yaml_file as the first and the the name of the file as the second parameter:

$ graphtransliterator dump --from yaml_file

../graphtransliterator/transliterators/
—example/example.yaml

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant", "vowel",
—~"whitespace"], [" ", "a","b"], [[2], (1], (011, CL"!B!", O], (2],(2],12]0,10],-5],1["A",0,0,
(_’[l]lolol_l]l["B"!OIOI [2110107_1]1[" "IOIOI [0]70101_11]1[" "

, "whitespace", 01, [[[1],
—~[11,","]1],{"name" : "example", "version":"1.0.0", "description"

:"An Example Bundled.
—Transliterator", "url":"https://github.com/seanpue/graphtransliterator/tree/master/
—transliterator/sample", "author":"Author McAuthorson", "author_email":"author_
—mcauthorson@msu.edu", "license":"MIT License", "keywords": ["example"], "project_urls":{
—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—graphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}},null]}

If you want to check for ambiguity in the transliterator before the dump, use the -——check-ambiguity or —ca option:

$ graphtransliterator dump —--from bundled Example --check-ambiguity # human readable

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant", "vowel",
—~"whitespace"], [" ", "a","b"],[[2],[1], (0], [["!'B!",[0O),2],[2],([2],(0],-5],(["a",0,0,
-[11,0,0,-211,1(1"B",0,0,(2],0,0,-2], (" ",0,0,1[0],0,0,-211,(["™ ","whitespace",0],[[[1],
—[11,","]1],{"name" : "example", "version":"1.0.0", "description":"An Example Bundled.
—Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/

—transliterator/sample", "author":"Author McAuthorson", "author_email":"author_

—mcauthorson@msu.edu", "license":"MIT License", "keywords": ["example"], "project_urls":{

—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—sgraphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}},null]}

The compression level can of the JSON be specified using the ——compression-level or —c1 command. Compres-
sion level 0 is human readable; compression level 1 is not human readable and includes the generated graph; compression

level 2 is not human readable and does not include the graph. Compression level 2, which is the fastest, is the default.
There is no information lost during these compressions:

$ graphtransliterator dump —--from bundled Example —--compression-level 0 # human.
—readable, with graph

{"tokens": {"a": ["vowel"], " ": ["whitespace"], "b": ["consonant"]}, "rules": [{
—"production": "IB!", "prev_classes": ["consonant"], "prev_tokens": ["a"], "tokens":_
— ["b"], "next_classes": ["consonant"], "next_tokens": ["a"], "cost": 0.
<»22239242133644802}, {"production": "A", "tokens": ["a"], "cost": 0.5849625007211562}
—, {"production": "B", "tokens": ["b"], "cost": 0.5849625007211562}, {"production":
" ", "tokens": [" "], "cost": 0.5849625007211562}], "whitespace": {"default": " ",
—"token_class": "whitespace", "consolidate": false}, "onmatch_rules": [{"prev_classes
—": ["vowel"], "next_classes": ["vowel"], "production": ","}], "metadata": {"name":
—"example", "version": "1.0.0", "description": "An Example Bundled Transliterator",
—"url": "https://github.com/seanpue/graphtransliterator/tree/master/transliterator/
—sample", "author": "Author McAuthorson", "author_email": "author_mcauthorson@msu.edu
—", "license": "MIT License", "keywords": ["example"], "project_urls": {

—"Documentation": "https://github.com/seanpue/graphtransliterator/tree/master/

—graphtransliterator/transliterators/example", "Source": "https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example"”, (tantiauskeniext page)
—"https://github.com/seanpue/graphtransliterator/issues"}},

"ignore_errors": false,

— — . ’
3g"whitespace": [™ "], "consonant": ["b"]},

"graph": _{ " @&!?eptel‘ [3{ " &aj@ﬂ!@_%ggcﬁléd 'G.rqph

—"b": [1], "a": [3], "™ ": [6]}, "type": "Start"}, {"ordered_children": {"__rules_ ":_
—~[2, 51}, "type": "token", "token": "b"}, {"rule_key": 0, "type": "rule", "accepting
—": true}, {"ordered_children": {"__rules__": [4]}, "type": "token", "token": "a"}, {

- - - - oy N N - - - —~ _— - - P

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

$ graphtransliterator dump —--from bundled Example —--compression-level 1 # not human.
—readable, with graph

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant", "vowel",
—"whitespace"], " ","a","b"],[[2], %], (0)]),["!B!'", O], ([2),[2],12],(0],-5],("Aa",0,0,
-r[1],0,0,-211,(("B",0,0,(2],0,0,-21,("™ ",0,0,[0],0,0,-201,([" ","whitespace",0],[[[1],
—[11,","]1],{"name" : "example", "version":"1.0.0", "description":"An Example Bundled.
—Transliterator", "url":"https://github.com/seanpue/graphtransliterator/tree/master/
—transliterator/sample", "author":"Author McAuthorson", "author_email":"author_
—mcauthorson@msu.edu", "license":"MIT License", "keywords": ["example"], "project_urls":{
—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—sgraphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}}, [["Start", "rule", "token"],
< [[0,0,{"2":[1],"1":[3],"0":[6]}],[2,0,2,{"-1":[2,5]}],[1,1,01,02,0,1,{"-1":[4]}], [1,
-1,11,11,2,21,102,0,0,{"-2":[71}],102,2,311,{"O":{"21":[0,-5,2],"3":[0,-2,1],"6":[0,-1,
<01}, "1":{"2":[[[0], [1],[2],(0]],-5,-1],"5":[0,~-1,-10},"3":{"4":[0,-1,-1]},"6":{"7
—":[0,-1,-11}}11}

$ graphtransliterator dump —--from bundled Example —--compression-level 2 # default;.
—not human readable, no graph

{"graphtransliterator_version":"1.2.2","compressed_settings":[["consonant", "vowel",
—"whitespace"], (" ","a","b"], [[2], (1), (00}, C["'B!", [0, 2], (2],12],1(0],-5],(["a",0,0,
-f[11,0,0,-21,11"B",0,0,12],0,0,-27,(" ",0,0,101,0,0,-211,["™ ","whitespace",0],[[[1],
—~[11,","]1],{"name" : "example", "version":"1.0.0", "description":"An Example Bundled.
—Transliterator","url":"https://github.com/seanpue/graphtransliterator/tree/master/
—transliterator/sample”, "author":"Author McAuthorson", "author_email":"author_
—mcauthorson@msu.edu", "license":"MIT License", "keywords": ["example"], "project_urls":{
—"Documentation":"https://github.com/seanpue/graphtransliterator/tree/master/
—graphtransliterator/transliterators/example", "Source":"https://github.com/seanpue/
—graphtransliterator/tree/graphtransliterator/transliterators/example", "Tracker":
—"https://github.com/seanpue/graphtransliterator/issues"}},null]}

Dump Tests

The dump-tests command dumps the tests of a bundled transliterator:

$ graphtransliterator dump-tests —-help

Usage: dump-tests [OPTIONS] BUNDLED

Dump BUNDLED tests.

Options:
-t, ——to [json]|yaml] Format (json/yaml) in which to dump [default: yaml]
—--help Show this message and exit.

By default, it outputs the original YAML tests file, preserving any comments:

3.2. Citation 31

Graph Transliterator Documentation, Release 1.2.2

$ graphtransliterator dump-tests Example

YAML declaration of tests for bundled Graph Transliterator
These are in the form of a dictionary.

The key is the source text, and the value is the correct transliteration.
|l . |l |l

a: A

aa: A,A

babab: BA!B!AB

b: B

To output as JSON, use the ——t o or -t flag:

$ graphtransliterator dump-tests —--to Jjson Example

{vl n. on vl’ ngv. "A", "3a": "A,A", "bHabab": "BA!B!AB", "pHv. "B"}

Generate Tests

The generate-tests command generates YAML tests keyed from input to desired output covering the entire internal
graph. This command can be used to view the output of the transliterator in Unicode. It can also be used to generate

starter tests for bundled transliterators:

$ graphtransliterator generate-tests —--help

Usage: generate-tests [OPTIONS]

Generate tests as YAML.

Options:

-f, ——from <CHOICE TEXT>... Format (bundled/json/json_file/yaml_file) and
source (name, JSON, or filename) of
transliterator [required]

-ca, —-check-ambiguity / -nca, —-no-check—ambiguity
Check for ambiguity. [default: no-check-
ambiguity]

—-help Show this message and exit.

It also require a ——from or —f option with two arguments. The first argument specifies the format of the transliterator
(bundled, json, json_file, yaml_file), and the second a parameter for that format (the name of the bundled transliterator,
the actual JSON, or the name of a YAML file). Ambiguity checking can be turned on using ——check_ambiguity
or —ca:

$ graphtransliterator generate-tests —--from bundled Example

aa: A,A
b: B
babab: BA!B!AB

(continues on next page)

32 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

List Bundled Transliterators

The 1ist-bundled command provides a list of bundled transliterators:

$ graphtransliterator test —--help

Make JSON of Bundled Transliterator(s)

The make—-json command makes new JSON files of bundled transliterators:

$ graphtransliterator make-json —-help

It also allows regular-expression matching using the ——reg—-ex or —re flag. Matching starts at the start of the string.
This command is for people creating new bundled transliterators.

Test

The test command tests a bundled transliterator:

$ graphtransliterator test —--help

Usage: test [OPTIONS] BUNDLED

Test BUNDLED transliterator.

Options:
-ca, —--check-ambiguity / -nca, —--no-check-ambiguity
Check for ambiguity. [default: no-check-
ambiguity]
—--help Show this message and exit.

It can only be used with bundled transliterators, so it only needs the name of the transliterator as its argument. This feature
is useful when developing a transliterator. You can write the tests first and then begin developing the transliterator:

$ graphtransliterator test Example

True

3.2. Citation 33

Graph Transliterator Documentation, Release 1.2.2

Transliterate

The transliterate command will transliterate any following arguments:

$ graphtransliterator transliterate —--help

Usage: transliterate [OPTIONS] [INPUT]...

Transliterate INPUT.

Options:

—-f, ——from <CHOICE TEXT>... Format (bundled/json/json_file/yaml_file) and
source (name, JSON, or filename) of
transliterator [required]

-t, ——to [Json]|python] Format in which to output [default: python]

-ca, ——-check-ambiguity / -nca, —-no-check—-ambiguity
Check for ambiguity. [default: no-check-
ambiguity]

-ie, -nie, --ignore-—errors / —--no-ignore-errors
Ignore errors. [default: no-ignore-errors]

--help Show this message and exit.

It also requires a ——from or — £ option with two arguments. The first argument specifies the format of the transliterator
(bundled, json, json_file, yaml_file), and the second a parameter for that format (the name of the bundled transliterator,
the actual JSON, or the name of a YAML file).

The transliterate command will transliterate every argument that follows. If there is only one input string, it will return a
string:

$ graphtransliterator transliterate —-from bundled Example a
A
$ graphtransliterator transliterate -f json_file ../graphtransliterator/

—transliterators/example/example.json a

A

$ graphtransliterator transliterate -f yaml_file ../graphtransliterator/
—transliterators/example/example.yaml a

A

Otherwise, it will return a list:

$ graphtransliterator transliterate -f bundled Example a a

The transliterate command also an optional ——to or —t command that specifies the output format, a * python string
(default) or a json string:

34 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

’$ graphtransliterator transliterate --from bundled Example a

A

’$ graphtransliterator transliterate --from bundled Example —--to json a

IIAII

’$ graphtransliterator transliterate —--from bundled Example —--to python a a
[IAI’ IAI]

’$ graphtransliterator transliterate --from bundled Example —--to Jjson a a
["A"’ "A"]

3.2.5 Tutorial: Using GraphTransliterator

Note: Python code on this page: tutorial . py Jupyter Notebook: tutorial.ipynb

Graph Transliterator is designed to allow you to quickly develop rules for transliterating between languages and scripts. In
this tutorial you will use a portion of Graph Transliterators features, including its token matching, class-based matching,
and on match rules, using the GraphTransliterator class.

Tutorial Overview

The task for this tutorial will be to design a transliterator between the ITRANS (Indian languages TRANSliteration)
encoding for Devanagari (Hindi) and standard Unicode. ITRANS developed as a means to transliterate Indic-language
using the latin alphabet and punctuation marks before there were Unicode fonts.

The Devanagari alphabet is an abugida (alphasyllabary), where each “syllable” is a separate symbol. Vowels, except for
the default 3T (“a”) have a unique symbol that connects to a consonant. At the start of the words, they have a unique
shape. Consonants in sequence, without intermediary vowels, change their shape and are joined together. In Unicode,
that is accomplished by using the Virama character.

Graph Transliterator works by first converting the input text into a series of tokens. In this tutorial you will define the
tokens of ITRANS and necessary token classes that will allow us to generate rules for conversion.

Graph Transliterator allows rule matching by preceding tokens, tokens, and following tokens. It allows token classes to
precede or follow any specific tokens. For this task, you will use a preceding token class to identify when to write vowel
signs as opposed to full vowel characters.

Graph Transliterator also allows the insertion of strings between matches involving particular token classes. This translit-
erator will need to insert the virama character between transliteration rules ending with consonants in order to create
consonant clusters.

3.2. Citation 35

https://en.wikipedia.org/wiki/ITRANS
https://en.wikipedia.org/wiki/Devanagari
https://www.unicode.org
https://en.wikipedia.org/wiki/Virama

Graph Transliterator Documentation, Release 1.2.2

Configuring

Here you will parameterize the Graph Transliterator using its “easy reading” format, which uses YAML. It maps to a
dictionary containing up to five keys: tokens, rules, onmatch_rules (optional), whitespace,andmetadata
(optional).

Token Definitions

Graph Transliterator tokenizes its input before transliterating. The t okens section will map the input tokens to their
token classes. The main class you will need is one for consonants, so you can use consonant as the class. Graph
Transliterator also requires a dedicated whitespace class, so you can use whitespace.

Graph Transliterator allows the use of Unicode character names in files using \N{UNICODE CHARACTER NAME
HERE}} notation. You can enter the Unicode characters using that notation or directly. YAML will also unescape
\u#i###, where #### is the hexadecimal notation for a character.

Here is a subsection of that definition:

tokens:
k: [consonant]
kh: [consonant]

"\N{LATIN SMALL LETTER N WITH DOT ABOVE}": [consonant]
a: [vowel]

aa: [vowel]

A: [vowel]

' ': [wb,whitespace]

"\t": [wb,whitespace]

.N: [vowel_sign]

Transliteration Rule Definitions

The rule definitions in Graph Transliterator in “easy reading” format are also a dictionary where the rules are the key
and the production—what should be outputted by the rule—is the value. For this task, you just need to match individual
tokens and also any preceding token classes:

rules:
b: \N{DEVANAGARI LETTER B}
<consonant> A: \N{DEVANAGARI LETTER AA}
A: \N{DEVANAGARI LETTER AA}

These rules will replace “b” with the devanagari equivalent (%), and “A” with with a full letter AT if it is at a start of a
word (following a token of class “wb”, for wordbreak) or otherwise with a vowel sign T if it is not, presumably following a
consonant. Graph Transliterator automatically sorts rules by how many tokens are required for them to be matched, and
it picks the one with that requires the most tokens. So the “A” following a consonant would be matched before an “A”
after any other character. Graph Transliterator will also check for ambiguity in these rules, unless check_ambiguity
is set to False.

While not necessary for this tutorial, Graph Transliterator can also require matching of specific previous or following
tokens and also classes preceding and following those tokens, e.g.

kar (UMgaAdA <wb>): k,a,r_followed_by_U,M,qg,A_and_a_wordbreak
s o (n a): s,o_followed_by_n,a
(<wb> p y) aa r: aa,r_preceded_by_a_wordbreak,p,and_y

Here is a subsection of the rules:

36 Chapter 3. Sample Code and Graph

https://yaml.org

Graph Transliterator Documentation, Release 1.2.2

rules:
"\t": ll\t"

.D: "\N{DEVANAGARI LETTER DDDHA}"
<consonant> A: "\N{DEVANAGARI VOWEL SIGN AA}"
"\N{LATIN SMALL LETTER N WITH DOT ABOVE}": "\N{DEVANAGARI LETTER NGA}"

On Match Rule Definitions

You will want to insert the Virama character between consonants so that they will join together in Unicode output. To do
S0, add an “onmatch_rules” section:

onmatch_rules:
— <consonant> + <consonant>: "\N{DEVANAGARI SIGN VIRAMA}"

Unlike the tokens and rules, the onmatch rules are ordered. The first rule matched is applied. In YAML, they consist of a
list of dictionaries each with a single key and value. The value is the production string to be inserted between matches. The
* + " represents that space. So in the input string kyA, which would tokenizeas [' ', 'k"', 'y', "A', "' '],avirama
character would be inserted when y is matched, as it is of class “consonant” and the previously matched transliteration
rule for “k” ends with a “consonant”.

Whitespace Definitions

The final required setup parameter is for whitespace. These include the de fault whitespace token, which is temporarily
added before and after the input tokens; the consolidate option to replace sequential whitespace characters with a
single default whitespace character; and the t oken_class of whitespace tokens:

whitespace:
consolidate: false
default: ' '
token_class: whitespace

Metadata Definitions

Graph Transliterator also allows metadata to be added to its settings:

metadata:
title: "ITRANS Devanagari to Unicode"
version: "0.1.0"

3.2. Citation 37

20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Graph Transliterator Documentation, Release 1.2.2

Creating a Transliterator

Now that the settings are ready, you can create a Graph Transliterator. Since you have been using the “easy read-
ing” format, you can use GraphTransliterator.from_yaml_file () to read from a specific file or the
GraphTransliterator.from_yaml () to read from a YAML string. You read from the loaded contents of
an “easy reading” YAML file using GraphTransliterator.from_dict (). Graph Transliterator will convert

those settings into basic Python types and then return a GraphTransliterator:

from graphtransliterator import GraphTransliterator

easyreading_yaml = """

tokens:
k: [consonant]
kh: [consonant]
g: [consonant]
gh: [consonant]
~N: [consonant]

"\N{LATIN SMALL LETTER N WITH DOT ABOVE}":
ch: [consonant]

chh: [consonant]
Ch: [consonant]
j: [consonant]
jh: [consonant]
~n: [consonant]
T: [consonant]
Th: [consonant]
D: [consonant]
Dh: [consonant]
N: [consonant]
t: [consonant]
th: [consonant]
d: [consonant]
dh: [consonant]
n: [consonant]
“n: [consonant]
p: [consonant]
ph: [consonant]
b: [consonant]

bh: [consonant]

[consonant]

m: [consonant]
y: [consonant]
r: [consonant]
R: [consonant]
1l: [consonant]
1d: [consonant]
L: [consonant]
zh: [consonant]
v: [consonant]
sh: [consonant]
Sh: [consonant]
s: [consonant]
h: [consonant]
x: [consonant]
kSh: [consonant]
GY: [consonant]
j~n: [consonant]
dny: [consonant]
g: [consonant]
(continues on next page)
38 Chapter 3. Sample Code and Graph

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

80

82

83

85

86

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

[consonant]
[consonant]
[consonant]
[

N G QX

consonant]

.D: [consonant]

.Dh: [consonant]

[consonant]

[consonant]

a: [vowel]

aa: [vowel]
[Vvowel]

i: [vowel]

ii: [vowel]

I: [vowel]

ee: [vowel]

u: [vowel]

uu: [vowel]

U: [vowel]

= Hh

RRi: [vowel]
R"i: [vowel]
LLi: [vowel]
L"i: [vowel]
RRI: [vowel]
LLI: [vowel]
a.c: [vowel]

A

e: [vowel]

e: [vowel]

ai: [vowel]

A.c: [vowel]

~“o: [vowel]

o: [vowel]

au: [vowel]

' ': [wb,whitespace]
"\t": [wb,whitespace]

', ' [wb]
.h: [wb]
H: [wb]
OM: [wb]
AUM: [wb]
"1 [wb]
"It [wb]
'0': [wb]
'1': [wb]
'2': [wb]
'3': [wb]
47 [wb]
'5': [wb]
'6': [wb]
7' [wb]
'8': [wb]
'9': [wb]
Rs.: [wb]
~Rs.: [wb]
.a: [wb]

a.e: [vowel_sign]
.N: [vowel_sign]
.n: [vowel_sign]

(continues on next page)

3.2. Citation

39

107

108

110

11

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

M: [vowel_sign]

.m: [vowel_sign]
rules:

"\tll B vl\t"

.D: "\N{DEVANAGARI LETTER DDDHA}"
.Dh: "\N{DEVANAGARI LETTER RHA}"

.N: "\N{DEVANAGARI SIGN CANDRABINDU}"
.a: "\N{DEVANAGARI SIGN AVAGRAHA}"
.h: "\N{DEVANAGARI SIGN VIRAMA}\N{ZERO WIDTH NON-JOINER}"
.m: "\N{DEVANAGARI SIGN ANUSVARA}"
.n: "\N{DEVANAGARI SIGN ANUSVARA}"
'0': "\N{DEVANAGARI DIGIT ZERO}"

"1': "\N{DEVANAGARI DIGIT ONE}"

'2': "\N{DEVANAGARI DIGIT TWO}"

'3': "\N{DEVANAGARI DIGIT THREE}"
"4': "\N{DEVANAGARI DIGIT FOUR}"

'5': "\N{DEVANAGARI DIGIT FIVE}"

'6': "\N{DEVANAGARI DIGIT SIX}"

'7': "\N{DEVANAGARI DIGIT SEVEN}"
'8': "\N{DEVANAGARI DIGIT EIGHT}"
'9': "\N{DEVANAGARI DIGIT NINE}"

<consonant> A: "\N{DEVANAGARI VOWEL SIGN AA}"

<consonant> A.c: "\N{DEVANAGARI VOWEL SIGN CANDRA O}"

<consonant> I: "\N{DEVANAGARI VOWEL SIGN II}"
<consonant> LLI:
<consonant> LLi:
<consonant> L"i:
<consonant> RRI:
<consonant> RRi:
<consonant> R"i:

<consonant> U: "\N{DEVANAGARI VOWEL SIGN UU}"

<consonant> “e: "\N{DEVANAGARI VOWEL SIGN SHORT E}"
o: "\N{DEVANAGARI VOWEL SIGN SHORT O}"

<consonant>
<consonant> a: ''
<consonant> a.c:
<consonant> aa:
<consonant> ai:
<consonant> au:
<consonant> e:
<consonant> ee:
<consonant> i
<consonant> ii:
<consonant> o:

"\N{DEVANAGARI VOWEL SIGN AA}"
"\N{DEVANAGARI VOWEL SIGN AI}"
"\N{DEVANAGARI VOWEL SIGN AU}"
"\N{DEVANAGARI VOWEL SIGN E}"
"\N{DEVANAGARI VOWEL SIGN II}"
"\N{DEVANAGARI VOWEL SIGN I}"
"\N{DEVANAGARI VOWEL SIGN II}"
"\N{DEVANAGARI VOWEL SIGN O}"
<consonant> u: "\N{DEVANAGARI VOWEL SIGN U}"
<consonant> uu: "\N{DEVANAGARI VOWEL SIGN UU}"
A: "\N{DEVANAGARI LETTER AA}"
A.c: "\N{DEVANAGARI LETTER CANDRA O}"
AUM: "\N{DEVANAGARI OM}"
Ch: "\N{DEVANAGARI LETTER CHA}"
D: "\N{DEVANAGARI LETTER DDA}"
Dh: "\N{DEVANAGARI LETTER DDHA}"
G: "\N{DEVANAGARI LETTER GHHA}"

"\N{DEVANAGARI VOWEL SIGN VOCALIC LL}"
"\N{DEVANAGARI VOWEL SIGN VOCALIC
"\N{DEVANAGARI VOWEL SIGN VOCALIC
"\N{DEVANAGARI VOWEL SIGN VOCALIC
"\N{DEVANAGARI VOWEL SIGN VOCALIC
"\N{DEVANAGARI VOWEL SIGN VOCALIC

L}"
L}"
RR}"
R}"
R}"

"\N{DEVANAGARI VOWEL SIGN CANDRA E}"

GY: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"

: "\N{DEVANAGARI SIGN VISARGA}"
I: "\N{DEVANAGARI LETTER II}"

(continues on next page)

40

Chapter 3. Sample Code and Graph

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

J: "\N{DEVANAGARI LETTER ZA}"
K: "\N{DEVANAGARI LETTER KHHA}"
L: "\N{DEVANAGARI LETTER LLA}"

LLI: "\N{DEVANAGARI LETTER VOCALIC LL}"
LLi: "\N{DEVANAGARI LETTER VOCALIC L}"
L~i: "\N{DEVANAGARI LETTER VOCALIC L}"

M: "\N{DEVANAGARI SIGN ANUSVARA}"
N: "\N{DEVANAGARI LETTER NNA}"
OM: "\N{DEVANAGARI OM}"
R: "\N{DEVANAGARI LETTER RRA}"
RRI: "\N{DEVANAGARI LETTER VOCALIC RR}"
RRi: "\N{DEVANAGARI LETTER VOCALIC R}"
R"i: "\N{DEVANAGARI LETTER VOCALIC R}"
Rs.: "\N{INDIAN RUPEE SIGN}"
Sh: "\N{DEVANAGARI LETTER SSA}"
T: "\N{DEVANAGARI LETTER TTA}"
Th: "\N{DEVANAGARI LETTER TTHA}"
U: "\N{DEVANAGARI LETTER UU}"
"\N{DEVANAGARI LETTER YYA}"
e: "\N{DEVANAGARI LETTER SHORT E}"
~n: "\N{DEVANAGARI LETTER NNNA}"
~o: "\N{DEVANAGARI LETTER SHORT O}"
a: "\N{DEVANAGARI LETTER A}"
a.c: "\N{DEVANAGARI LETTER CANDRA E}"
a.e: "\N{DEVANAGARI LETTER CANDRA A}"
aa: "\N{DEVANAGARI LETTER AA}"
ai: "\N{DEVANAGARI LETTER AI}"
au: "\N{DEVANAGARI LETTER AU}"
"\N{DEVANAGARI LETTER BA}"
bh: "\N{DEVANAGARI LETTER BHA}"
ch: "\N{DEVANAGARI LETTER CA}"
chh: "\N{DEVANAGARI LETTER CHA}"
d: "\N{DEVANAGARI LETTER DA}"
dh: "\N{DEVANAGARI LETTER DHA}"
dny: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"
e: "\N{DEVANAGARI LETTER E}"
ee: "\N{DEVANAGARI LETTER II}"
f: "\N{DEVANAGARI LETTER FA}"
: "\N{DEVANAGARI LETTER GA}"
gh: "\N{DEVANAGARI LETTER GHA}"
h: "\N{DEVANAGARI LETTER HA}"
i: "\N{DEVANAGARI LETTER I}"
ii: "\N{DEVANAGARI LETTER II}"
j: "\N{DEVANAGARI LETTER JA}"
jh: "\N{DEVANAGARI LETTER JHA}"
j~n: "\N{DEVANAGARI LETTER JA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER NYA}"
k: "\N{DEVANAGARI LETTER KA}"
kSh: "\N{DEVANAGARI LETTER KA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER SSA}"
kh: "\N{DEVANAGARI LETTER KHA}"
1: "\N{DEVANAGARI LETTER LA}"
1d: "\N{DEVANAGARI LETTER LLA}"
m: "\N{DEVANAGARI LETTER MA}"
n: "\N{DEVANAGARI LETTER NA}"
o0: "\N{DEVANAGARI LETTER O}"
p: "\N{DEVANAGARI LETTER PA}"
ph: "\N{DEVANAGARI LETTER PHA}"
g: "\N{DEVANAGARI LETTER QA}"

3

o

(continues on next page)

3.2. Citation 41

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

: "\N{DEVANAGARI LETTER RA}"
s: "\N{DEVANAGARI LETTER SA}"
sh: "\N{DEVANAGARI LETTER SHA}"
t: "\N{DEVANAGARI LETTER TA}"
th: "\N{DEVANAGARI LETTER THA}"
u: "\N{DEVANAGARI LETTER U}"
uu: "\N{DEVANAGARI LETTER UU}"
v: "\N{DEVANAGARI LETTER VA}"
x: "\N{DEVANAGARI LETTER KA}\N{DEVANAGARI SIGN VIRAMA}\N{DEVANAGARI LETTER SSA}"
y: "\N{DEVANAGARI LETTER YA}"
z: "\N{DEVANAGARI LETTER ZA}"
zh: "\N{DEVANAGARI LETTER LLLA}"
"|': "\N{DEVANAGARI DANDA}"
"||"': "\N{DEVANAGARI DOUBLE DANDA}"
~N: "\N{DEVANAGARI LETTER NGA}"

~Rs.: "\N{INDIAN RUPEE SIGN}"
~n: "\N{DEVANAGARI LETTER NYA}"
"\N{LATIN SMALL LETTER N WITH DOT ABOVE}": "\N{DEVANAGARI LETTER NGA}"

onmatch_rules:
— <consonant> + <consonant>: "\N{DEVANAGARI SIGN VIRAMA}"

whitespace:
consolidate: false
default: ' '
token_class: whitespace
metadata:

title: ITRANS to Unicode

version: 0.1.0
mmww

gt = GraphTransliterator.from_yaml (easyreading_yaml)

Transliterating

With the transliterator created, you can now transliterate using GraphTransliterator.transliterate():

gt.transliterate("aaj mausam ba.Daa beiimaan hai, aaj mausam")

2R RERR RPRERER @3,

Other Information

Graph Transliterator has a few other tools built in that are for more specialized applications.

If you want to receive the details of the most recent transliteration, access GraphTransliterator.
last_matched_rules to get this list of rules matched:

gt.last_matched_rules

[TransliterationRule (production='[A', prev_classes=None, prev_tokens=None, tokens=['aa
'], next_tokens=None, next_classes=None, cost=0.5849625007211562),
TransliterationRule (production="[]', prev_classes=None, prev_tokens=None, tokens=[']
— '], next_tokens=None, next_classes=None, cost=0.5849625007211562),
TransliterationRule (production=' ', prev_classes=None, prev_tokens=None, tokens=['

'], next_tokens=None, next_classes=None, cost=0.5849625007211562),

(continues on next page)

42 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

TransliterationRule (production="[",
— '], next_tokens=None,
TransliterationRule (production="'[3",
—~tokens=["au'], next_tokens=None,
TransliterationRule (production="[
'], next_tokens=None, next_classes
TransliterationRule (production="",

—~tokens=["'a'], next_tokens=None, ne
TransliterationRule (production="[2"

— '], next_tokens=None, next_classes
TransliterationRule (production="
'], next_tokens=None, next_classes
TransliterationRule (production="[J'

— '], next_tokens=None, next_classes
TransliterationRule (production="",

—~tokens=["'a'], next_tokens=None, ne
TransliterationRule (production="[

'], next_tokens=None, next_classes
TransliterationRule (production="[(",
—~tokens=["'aa'], next_tokens=None, n
TransliterationRule (production="
— '], next_tokens=None, next_classes
TransliterationRule (production="[

'], next_tokens=None, next_classes
TransliterationRule (production="[(",
—~tokens=["'e'], next_tokens=None,
TransliterationRule (production="'[3",
— '], next_tokens=None,
TransliterationRule (production="'[3",
'], next_tokens=None,
TransliterationRule (production="[J]'
—tokens=["'aa'], next_tokens=None,

TransliterationRule (production="'[3",
'], next_tokens=None,
TransliterationRule (production="
—"'], next_tokens=None,
TransliterationRule (production="[",
— '], next_tokens=None,
TransliterationRule (production="'[3",
—tokens=["'ai'], next_tokens=None,
TransliterationRule (production="',",
— '], next_tokens=None,
TransliterationRule (production="'
next_tokens=None,

—

v
’

—

v
’

—

—

—
'
’

v
’

‘A"Jr

TransliterationRule (production="'[3",
next_classes=None,

— '], next_tokens=None,

TransliterationRule (production="'[3",
next_classes=None,

—"'], next_tokens=None,
TransliterationRule (production="'

next_tokens=None,

v

‘—”Jr

TransliterationRule (production="[",
next_classes=None,

'], next_tokens=None,
TransliterationRule (production="[3
next_tokens=None,

—

—~tokens=["au'],

TransliterationRule (production="'[2",
next_classes=None,

next_tokens=None,

‘—”Jr

next_classes=
next_classes=None,

=None,
prev_classes=['consonant'],

next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,
next_classes=None,

next_classes=None,

next_classes=None,

next_classes=None,

prev_classes=None, prev_tokens=None, tokens=['m
None, cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None, .
cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=['s
cost=0.5849625007211562),
prev_tokens=None, .
xt_classes=None, cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=['m
=None, cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
=None, cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
=None, cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None, .
xt_classes=None, cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=['.D
=None, cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None,.
ext_classes=None, cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=["
=None, cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
=None, cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None,.
cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=['ii
cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None,.
cost=0.4150374992788437),
tokens=["'n

tokens=["

tokens=["'b

tokens=["'Db

tokens=["'m

prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None, .
cost=0.4150374992788437),

tokens=["

tokens=['h

prev_classes=None, prev_tokens=None, tokens=["',
cost=0.5849625007211562),

prev_classes=None, prev_tokens=None, tokens=["
cost=0.5849625007211562),

prev_classes=None, prev_tokens=None, tokens=['aa

cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=None, prev_tokens=None,
cost=0.5849625007211562),
prev_classes=['consonant'], prev_tokens=None, .
cost=0.4150374992788437),
prev_classes=None, prev_tokens=None, tokens=['s
cost=0.5849625007211562),

tokens=["'j

tokens=["

tokens=["'m

TransliterationRule (production="'"', prev_classes=['consonant'], prev_tokens=None, .
—stokens=['a'], next_tokens=None, next_classes=None, cost=0.4150374992788¢gminyes on next page)

3.2. Citation

43

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

TransliterationRule (production="["', prev_classes=None, prev_tokens=None, tokens=['m
'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

Or if you just want to know the tokens matched by each rule, check GraphTransliterator.
last_matched_rule_tokens:

52 | gt.last_matched_rule_tokens

You can access the directed tree used by GraphTransliterator using GraphTransliterator.graph:

253 ’ gt .graph

’<graphtransliterator.graphs.DirectedGraph at 0x7£4528100£50>

44 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

3.2.6 Advanced Tutorial: Bundling a Transliterator

This advanced tutorial builds upon the original tutorial to show you how to bundle a transliterator for inclusion in Graph

Transliterator.

Contributions to Graph Transliterator are strongly encouraged!

You will make a very simple transliterator while going through the steps of bundling it into Graph Transliterator.

Git Basics: Fork, Branch, Sync, Commit

Fork

The first thing to do, if you have not already, is to create a fork of Graph Transliterator. See https://help.github.com/en/

articles/fork-a-repo
(From here on out, we will be using the command line.)

After creating a fork, clone your forked repo:

git clone https://github.com/YOUR-USERNAME/graphtransliterator

Branch

Once you have done that, go into that directory and create a new branch:

cd graphtransliterator
git checkout -b [name_of_your_transliterator_branch]

For this example, you can use the branch a_to_b:

cd graphtransliterator
git checkout -b a_to_b

Then, push that branch to the origin (your personal github fork):

git push origin [name_of_your_transliterator_branch]
Here that would be:
code-block:: bash

git push origin a_to_b

Next, add a remote upstream for Graph Transliterator (the official Graph Transliterator repo):

git remote add upstream https://github.com/seanpue/graphtransliterator.git

3.2. Citation

45

https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/fork-a-repo

Graph Transliterator Documentation, Release 1.2.2

Sync

To update your local copy of the the remote (official Graph Transliterator repo), run:

’git fetch upstream

To sync your personal fork with the remote, run:

’git merge upstream/master

See https://help.github.com/en/articles/syncing-a-fork for more info. You can run the previous two commands at any
time.

Commit

You can commit your changes by running:

git commit -m 'comment here about the commit'

Adding A Transliterator

To add a transliterator, the next step is to create a subdirectory in t ransliterators. For this tutorial, you can make
a branch named a_to_b.

Note that this will be under graphtransliterator/transliterators, so from the root directory enter:

cd graphtransliterator/transliterators
mkdir [name_of_your_transliterator]
cd [name_of_your_transliterator]

For this example, you would enter:

cd graphtransliterator/transliterators
mkdir a_to_b
cd a_to_b

Inthe graphtransliterator/transliterators/[name_of_your_transliterator] directory, you

will add:
e an__init__.py
* a YAML file in the “easy reading format”
¢ a JSON file that is a serialization of the transliterator (optional)
* a tests directory including a file named [name_of_your_transliterator]_tests.yaml
¢ a Python test named test_ [name_of_your_transliterator].py (optional)

Here is a tree showing the file organization:

transliterators
F—— {{source_to_target}}
| F— __init_ .py

| F—— {{source_to_target}}.json
| F—— {{source_to_target}}.yaml

(continues on next page)

46 Chapter 3. Sample Code and Graph

https://help.github.com/en/articles/syncing-a-fork

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

L— tests
F—— test_{{source_to_target}}.py
L {{source_to_target}}_tests.yaml

YAML File

The YAML file should contain the “easy reading” version of your transliterator. For this example, create a file called

a_to_b.yaml. Add ametadata field to the YAML file, as well, following the guidelines.

tokens:

a: [a_class]

' ': [whitespace]
rules:

a: A

onmatch_rules:
- <a_class> + <a_class>: ","
whitespace:
default: ' '
token_class: whitespace
consolidate: false
metadata:
name: A to B
version: 0.0.1
url: http://website_of_project.com
author: Your Name is Optional
author_email: your_email@is_option.al
maintainer: Maintainer's Name is Optional
maintainer_email: maintainers_email@is_option.al
license: MIT or Other Open Source License
keywords: [add, keywords, here, as, a, list]
project_urls:
Documentation: https://link_to_documentation.html
Source: https://link_to_sourcecode.html
Tracker: https://link_to_issue_tracker.html

For most use cases, the project_urls can link to the Graph Transliterator Github page.

JSON File

To create a JSON file, you can use the command line interface:
$ graphtransliterator dump —from yaml_file a_to_b.yaml > a_to_b.json
Alternatively, you can use the make—-json command:

$ graphtransliterator make-json AToB

The JSON file loads more quickly than the YAML one, but it is not necessary during development.

3.2. Citation

47

Graph Transliterator Documentation, Release 1.2.2

__init__.py

The __init__.py will create the bundled transliterator, which is a subclass of GraphTransliterator named Bundled.

Following convention, uou need to name your transliterator’s class is CamelCase. For this example, it would be AToB:

from graphtransliterator.transliterators import Bundled

class AToB (Bundled) :

mn

A to B Bundled Graph Transliterator

men

def _ _init_ (self, **kwargs):
"""Tnitialize transliterator from YAML."'""
self.from_YAML (
**kwargs
) # defaults to check_ambiguity=True, check_coverage=True
When ready, remove the previous lines and initialize more quickly from JSON:
self.init_from JSON (**kwargs) # check_ambiguity=False, check_coverage=False

When you load the bundled transliterator from YAML using £from_ YAML it will check for ambiguity as well as check
the coverage of the tests. You can turn those features off temporarily here.

When a transliterator is added into Graph Transliterator, it will likely be set to load from JSON by default. Tests will
check for ambiguity and coverage.

Tests

Graph Transliterator requires that all bundled transliterators have tests that visit every edge and node of the internal graph
and that use all on-match rules. The test file should be a YAML file defining a dictionary keyed from input to correct
output.

You can test the transliterator as you are developing it by adding YAML tests and running the command:

graphtransliterator test [name_of_your_transliterator]

Tests can be generated using the command line interface:

mkdir tests
graphtransliterator generate-tests —-—-from bundled [name_of_your_transliterator] >.
—tests/[name_of_your_transliterator]

Testing the Transliterator

You should test the transliterator to make sure everything is correct, including its metadata. To do that, navigate back to
the root directory of graphtransliterator and execute the command:

’py.test tests/test_transliterators.py

You can also run the complete suite of tests by running:

’tox

48 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

Pushing Your Transliterator
When you are finished with a version of your transliterator, you should once again commit it to your github branch
after syncing your branch with the remote. Then you can make a pull request to include the transliterator in Graph

Transliterator. You can do that from the Graph Transliterator Github page. See https://help.github.com/en/articles/
creating-a-pull-request-from-a-fork.

3.2.7 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

Contributor Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to
abide by its terms.

Types of Contributions

You can contribute in many ways:

Report Bugs

Report bugs at https://github.com/seanpue/graphtransliterator/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to whoever
wants to implement it.

3.2. Citation 49

https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://github.com/seanpue/graphtransliterator/issues

Graph Transliterator Documentation, Release 1.2.2

Write Documentation

Graph-based Transliterator could always use more documentation, whether as part of the official Graph-based Translit-
erator docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/seanpue/graphtransliterator/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

Add Transliterators

We welcome new transliterators to be added to the bundled transliterators!

See the documentation about Bundled Transliterators and look at Example as a model.

Raise an issue on Github, https://github.com/seanpue/graphtransliterator/issues

Then create a new branch with the new transliterator. Make sure the transliterator passes all of these requirements:
* is a submodule of graphtransliterator.transliterators
¢ has a unique name, preferably in format source_to_target

e has the following files: - __init_ _.py - {{source_to_target}}.yaml - {{source_to_target}}.json -
tests/{ {source_to_target} }_tests.yaml - tests/test_{ { source_to_target} }.py (optional)

* has a classname in camel case, e.g. SourceToTarget
* has complete test coverage of all nodes and edges of generated graph and all onmatch rules, if present
* has required metadata in the YAML file.

When all the requirements are fulfilled, submit a pull request, and it will be reviewed for inclusion in a near-future release.

Get Started!

Ready to contribute? Here’s how to set up graphtransliterator for local development.
1. Fork the graphtransliterator repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/graphtransliterator.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv graphtransliterator
$ cd graphtransliterator/
$ python setup.py develop

50 Chapter 3. Sample Code and Graph

https://github.com/seanpue/graphtransliterator/issues
https://github.com/seanpue/graphtransliterator/issues

Graph Transliterator Documentation, Release 1.2.2

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you're done making changes, format your code using the Black code formatter. (You can do that in your
editor, as well). Then check that your changes pass flake8 and the tests, including testing other Python versions
with tox:

$ black graphtransliterator

$ flake8 graphtransliterator tests
$ python setup.py test or py.test
$ tox

To get black, flake8, and tox, just pip install them into your virtualenv.
You should also test your coverage using make:
$ make coverage

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with
a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.7 and 3.8 for PyPy. Check https:/travis-ci.org/seanpue/
graphtransliterator/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_graphtransliterator

3.2. Citation 51

https://travis-ci.org/seanpue/graphtransliterator/pull_requests
https://travis-ci.org/seanpue/graphtransliterator/pull_requests

Graph Transliterator Documentation, Release 1.2.2

Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY .rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

The module uses Github Actions to deploy to TestPyPI and to PyPI.

3.2.8 API Reference

A list of the full API reference of all public classes and functions is below.

Public members can (and should) be imported from graphtransliterator:

from graphtransliterator import GraphTransliterator

Bundled transliterators require that graphtransliterator.transliterators: be imported:

import graphtransliterator.transliterators
transliterators.iter_names ()

Core Classes

class graphtransliterator.GraphTransliterator (tokens, rules, whitespace, onmatch_rules=None,

metadata=None, ignore_errors=False,
check_ambiguity=True,
onmatch_rules_lookup=None,
tokens_by_class=None, graph=None,
tokenizer_pattern=None,
graphtransliterator_version=None, **kwargs)

A graph-based transliteration tool that lets you convert the symbols of one language or script to those of another

using rules that you define.

Transliteration of tokens of an input string to an output string is configured by: a set of input token types with
classes, pattern-matching rules involving sequences of tokens as well as preceding or following tokens and token
classes, insertion rules between matches, and optional consolidation of whitespace. Rules are ordered by specificity.

Note: This constructor does not validate settings and should typically not be called directly. Use
from_dict () instead. For “easy reading” support, use from_easyreading_dict (), from_yaml (),
or from_yaml_file (). Keyword parameters used here (ignore_errors, check_ambiguity) can be
passed from those other constructors.

Parameters
* tokens (dict of {str: set of str}) — Mapping of input token types to token classes
» rules (list of TransliterationRule) — list of transliteration rules ordered by cost

* onmatch_rules (list of OnMatchRule, or None) — Rules for output to be inserted be-
tween tokens of certain classes when a transliteration rule has been matched but before its
production string has been added to the output

52 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

» whitespace (WhitespaceRules) — Rules for handling whitespace
* metadata (dict or None) — Metadata settings

* ignore_errors (bool, optional) — If true, transliteration errors are ignored and do not raise
an exception. The default is false.

* check_ambiguity (bool, optional) — If true (default), transliteration rules are checked for
ambiguity. 1oad () and 1oads () do not check ambiguity by default.

* onmatch_rules_lookup (dict of {str: dict of {str: list of int}}, optional’) — On-
MatchRules lookup, used internally, will be generated if not present.

* tokens_by_class (dict of {str: set of str}, optional) — Tokens by class, used internally,
will be generated if not present.

* graph (DirectedGraph, optional) — Directed graph used by Graph Transliterator, will be gen-
erated if not present.

* tokenizer_ pattern (str, optional) — Regular expression pattern for input string tokeniza-
tion, will be generated if not present.

* graphtransliterator_version (str, optional) — Version of graphtransliterator,
added by dump() and dumps().

Example

1 | from graphtransliterator import GraphTransliterator, OnMatchRule, .
—TransliterationRule, WhitespaceRules

2 settings = {'tokens': {'a': {'vowel'}, " ': {'wb'}}, 'onmatch_rules':.
— [OnMatchRule (prev_classes=["'vowel'], next_classes=['vowel'], production=',"')],
—'rules': [TransliterationRule (production='A', prev_classes=None, prev_
—tokens=None, tokens=['a'], next_tokens=None, next_classes=None, cost=0.
—5849625007211562), TransliterationRule (production=' ', prev_classes=None, prev_
—~tokens=None, tokens=[' '], next_tokens=None, next_classes=None, cost=0.
—5849625007211562)], 'metadata': {'author': 'Author McAuthorson'}, 'whitespace':.
—WhitespaceRules (default="' ', token_class='wb', consolidate=False) }

3 |gt = GraphTransliterator (**settings)

4 |gt.transliterate('a')

A

See also:

from_dict Constructor from dictionary of settings
from _easyreading _dict Constructor from dictionary in “easy reading” format
from_yaml Constructor from YAML string in “easy reading” format
from_yaml_file Constructor from YAML file in “easy reading” format
dump (compression_level=0)

Dump configuration of Graph Transliterator to Python data types.

Compression is turned off by default.

Parameters compression_level (int) — A value in O (default, no compression), 1 (compres-
sion including graph), and 2 (compressiong without graph)

3.2. Citation 53

Graph Transliterator Documentation, Release 1.2.2

Returns
GraphTransliterator configuration as a dictionary with keys:
"tokens" Mappings of tokens to their classes (OrderedDict of {str: list of str})
"rules" Transliteration rules in direct format (list of dict of {str: str})
"whitespace" Whitespace settings (dict of {str: str})
"onmatch_rules" On match rules (/ist of OrderedDict)
"metadata" Dictionary of metadata (dict)
"ignore_errors" Ignore errors in transliteration (bool)

"onmatch_rules_lookup" Dictionary keyed by current token to previous token
containing a list of indexes of applicable OnmatchRule to try (dict of {str: dict of
{str: list of int}})

"tokens_by_class" Tokens keyed by token class, used internally (dict of {str: list
of str})

"graph" Serialization of DirectedGraph (dict)
"tokenizer_ pattern" Regular expression for tokenizing (str)
"graphtransliterator_version" Module version of graphtransliterator (str)

Return type OrderedDict

Example

T

yaml_ =
tokens:
a: [vowel]
'l [wb]
rules:
a: A
whitespace:
default: " "
consolidate: false
token_class: wb
onmatch_rules:

- <vowel> + <vowel>: ',' # add a comma between vowels
metadata:
author: "Author McAuthorson"

gt = GraphTransliterator.from_yaml (yaml_)

gt .dump ()
OrderedDict ([('tokens', {'a': ['vowel'], ' ': ['wb']l}),
('rules',
[OrderedDict ([('production', 'A'"),
("tokens', ['a'l),
('cost', 0.5849625007211562)1),
OrderedDict ([('production', ' '),
("tokens', [' '1),
('cost', 0.5849625007211562)1)1),

(continues on next page)

54

Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

('whitespace',

{'token_class': 'wb', 'default': ' ', 'consolidate': False}),
('onmatch_rules',
[OrderedDict ([('prev_classes', ['vowel']),
("next_classes', ['vowel']),
('production', ',")1)1),
('metadata', {'author': 'Author McAuthorson'}),
('ignore_errors', False),
('onmatch_rules_lookup', {'a': {'a': [0]1}}),
('tokens_by_class', {'vowel': ['a']l, 'wb': [' "]1}),
('"graph',
{'edge': {0: {1: {'token': 'a', 'cost': 0.5849625007211562},
3: {'token': ' ', 'cost': 0.5849625007211562}},

1: {2: {'cost': 0.5849625007211562}},
3: {4: {'cost': 0.5849625007211562}}},

'edge_list': [(0, 1), (O, 3), (1, 2), (3, 4)1,
'node': [{'ordered_children': {'a': [1], ' ': [3]1},
'type': 'Start'},
{'token': 'a',
'ordered_children': {'__rules_ ': [2]},
'type': 'token'},
{'accepting': True, 'type': 'rule', 'rule_key': 0},
{'"token': " ',
'ordered_children': {'__rules__ ': [4]},
'type': 'token'},
{'accepting': True, 'type': 'rule', 'rule_key': 1}11}),

("tokenizer_pattern', '(al\\)'"),
('graphtransliterator_version', '1.2.2")1])

See also:

dumps Dump Graph Transliterator configuration to JSON string
load Load Graph Transliteration from configuration in Python data types

loads Load Graph Transliteration from configuration as a JSON string

dumps (compression_level=2)

Parameters

* compression_level (int) — A value in O (no compression), 1 (compression including
graph), and 2 (default, compression without graph)

* separators (tuple of str) — Separators used by json.dumps(), default is compact

e (JSON) (Dump settings of Graph Transliterator to Javascript
Object Notation)-—

e default. (Compression is turned on by)-
Returns JSON string
Return type st

3.2. Citation 55

Graph Transliterator Documentation, Release 1.2.2

Examples
23 |yaml_ = """
24 tokens:
25 a: [vowel]
2% 'ty [wb]
27 rules:
28 a: A
29 e vt
30 whitespace:
31 default: " "
k) consolidate: false
33 token_class: wb
34 onmatch_rules:
35 - <vowel> + <vowel>: ',' # add a comma between vowels
36 metadata:
37 author: "Author McAuthorson"
38 v
3 |gt = GraphTransliterator.from_yaml (yaml_)
40 | gt.dumps ()

'{"graphtransliterator_version":"1.2.2","compressed_settings":[["vowel", "wb"],
"[" "!"a"JI [[111 [O]Jl [["A"/ 0/ Ol [11107 01_1]1 [" "I Ol Ol [O]/O/ 01_11]1 [" "/"Wb"/
—0],[[[0],101,","]1,{"author":"Author McAuthorson"},null]}"

See also:

dump Dump Graph Transliterator configuration to Python data types
load Load Graph Transliteration from configuration in Python data types

loads Load Graph Transliteration from configuration as a JSON string

static from_dict (dict_settings, **kwargs)

Generate GraphTransliterator from dict settings.
Parameters dict_settings (dict) — Dictionary of settings
Returns Graph transliterator

Return type GraphTransliterator

static from_easyreading_dict (easyreading_settings, **kwargs)

Constructs GraphTransliterator from a dictionary of settings in “easy reading” format, i.e. the loaded contents
of a YAML string.

Parameters easyreading_settings (dict) — Settings dictionary in easy reading format with
keys:

"tokens" Mappings of tokens to their classes (dict of {str: list of str})
"rules" Transliteration rules in “easy reading” format (list of dict of {str: str})

"onmatch_rules" On match rules in “easy reading” format (dict of {str: str}, op-
tional)

"whitespace" Whitespace definitions, including default whitespace token, class of
whitespace tokens, and whether or not to consolidate (dict of {‘default’: str, ‘token_class’:
str, consolidate: bool}, optional)

"metadata" Dictionary of metadata (dict, optional)

56

Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

Returns Graph Transliterator

Return type GraphTransliterator

Note: Called by from yaml ().

Example
41 |tokens = {
o) 'ab': ['class_ab'],
43 Yt [Twb']
44 }
45 |whitespace = {
46 'default': ' ',
47 'token_class': 'wb',
48 'consolidate': True

49 }

s0 | onmatch_rules = [

51 {'<class_ab> + <class_ab>': ',"'}

52]

s3 |rules = {'ab': 'AB',

54 R

55 settings = {'tokens': tokens,

56 'rules': rules,

57 'whitespace': whitespace,

58 'onmatch_rules': onmatch_rules}

s9 | gt = GraphTransliterator.from_easyreading_dict (settings)

o0 |gt.transliterate("ab abab")

"AB_AB,AB'

See also:

from_yaml Constructor from YAML string in “easy reading” format
from_yaml_file Constructor from YAML file in “easy reading” format
static from_yaml (yaml_str, charnames_escaped=True, **kwargs)
Construct GraphTransliterator from a YAML str.
Parameters
e yaml_str (str)— YAML mappings of tokens, rules, and (optionally) onmatch_rules

¢ charnames_escaped (boolean) — Unescape Unicode during YAML read (default
True)

Note: Called by from yaml_file () andcalls from_easyreading dict ().

3.2. Citation 57

https://docs.python.org/3/library/stdtypes.html#str

Graph Transliterator Documentation, Release 1.2.2

Example
6 |yaml_ = """
&2 |tokens:
63 a: [classl]
64 't [wb]

6 | rules:
66 a: A
67]] .]]

6 |whitespace:

69 default: " '

70 consolidate: True

71 token_class: wb

72 | onmatch_rules:

73 — <classl> + <classl>: "+"

74 ree

75 | gt = GraphTransliterator.from_yaml (yaml_)

76 |gt.transliterate("a aa")

'A A+A'

See also:

from_easyreading_dict Constructor from dictionary in “easy reading” format
from_yaml Constructor from YAML string in “easy reading” format
from_yaml_file Constructor from YAML file in “easy reading” format

static from_yaml_file (yaml_filename, **kwargs)
Construct GraphTransliterator from YAML file.

Parameters yaml_filename (st r)— Name of YAML file, containing tokens, rules, and (op-
tionally) onmatch_rules

Note: Calls from_yaml ().

See also:

from_yaml Constructor from YAML string in “easy reading” format
from_easyreading dict Constructor from dictionary in “easy reading” format
property graph
Graph used in transliteration.
Type DirectedGraph

property graphtransliterator_version
Graph Transliterator version.

Type str

property ignore_errors
Ignore transliteration errors setting.

Type bool

58

Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/stdtypes.html#str

Graph Transliterator Documentation, Release 1.2.2

property last_input_tokens
Last tokenization of the input string, with whitespace at start and end.

Type list of str

property last_matched_rule_tokens
Last matched tokens for each rule.

Type list of list of str

property last_matched_rules
Last transliteration rules matched.

Type list of TransliterationRule

static load (settings, **kwargs)
Create GraphTransliterator from settings as Python data types.

Parameters settings — GraphTransliterator configuration as a dictionary with keys:
"tokens" Mappings of tokens to their classes (dict of {str: list of str})
"rules" Transliteration rules in direct format (list of OrderedDict of {str: str})
"whitespace" Whitespace settings (dict of {str: str})

"onmatch_rules" On match rules (/ist of OrderedDict, optional)
"metadata" Dictionary of metadata (dict, optional)
"ignore_errors" Ignore errors. (bool, optional)

"onmatch_rules_lookup" Dictionary keyed by current token to previous token
containing a list of indexes of applicable Onmat chRule to try (dict of {str: dict of
{str: list of int}}, optional)

tokens_by_class Tokens keyed by token class, used internally (dict of {str: list of
str}, optional)

graph Serialization of DirectedGraph (dict, optional)
"tokenizer_ pattern" Regular expression for tokenizing (str, optional)

"graphtransliterator_version" Module version of graphtransliterator (str,
optional)

Returns Graph Transliterator

Return type GraphTransliterator

Example

77 | from collections import OrderedDict

78 | settings = {'tokens': {'a': ['vowel'], " ': ['wb'l},
79 'rules': [OrderedDict ([('production', 'A'),

80 # Can be compacted, removing None values

81 # ('prev_tokens', None),

82 ('tokens', ['a']),

('next_classes', None),

('next_tokens', None),

85 ('"cost', 0.5849625007211562)1),

86 OrderedDict ([('production', "' "),
('prev_classes', None),

(continues on next page)

3.2. Citation 59

Graph Transliterator Documentation, Release 1.2.2

(continued from previous page)

88 ('prev_tokens', None),

89 ('tokens', ['" ']),

90 ('next_classes', None),

91 ('next_tokens', None),

[('"cost', 0.5849625007211562)1)1,

93 'whitespace': {'default': ' ', 'token_class': 'wb', 'consolidate': False},
94 'onmatch_rules': [OrderedDict ([('prev_classes', ['vowel'l]),

95 ('next_classes', ['vowel'l),

96 ('production', ',")1)1,

97 'metadata': {'author': 'Author McAuthorson'},

98 'onmatch_rules_lookup': {'a': {'a': [0]}},

99 'tokens_by_class': {'vowel': ['a']l, 'wb': ['" ']},

100 'graph': {'edge': {0: {1: {'token': 'a', 'cost': 0.5849625007211562},
101 3: {'token': " ', 'cost': 0.5849625007211562}},

102 1: {2: {'cost': 0.5849625007211562}},

103 3: {4: {'cost': 0.5849625007211562}}},

104 'node': [{'type': 'Start', 'ordered_children': {'a': [1], " ': [31}},
105 {'type': 'token', 'token': 'a', 'ordered_children': {'__rules__': [2]}},
106 {'type': 'rule',

107 'rule_key': O,

108 'accepting': True,

109 'ordered_children': {}},

110 {'type': 'token', 'token': ' ', 'ordered_children': {'__rules__': [4]}},
111 {'type': 'rule',

112 'rule_key': 1,

13 'accepting': True,

114 'ordered_children': {}}1,

115 'edge_1list': [(0, 1), (1, 2), (0, 3), (3, 4)1},

116 'tokenizer_pattern': '(al\)",

17 'graphtransliterator_version': '0.3.3'}

us |gt = GraphTransliterator.load(settings)

19 | gt.transliterate('aa')

IA,AI

10 | # can be compacted
121 settings.pop ('onmatch_rules_lookup')
122 | GraphTransliterator.load(settings) .transliterate('aa')

"A,A"

See also:

dump Dump Graph Transliterator configuration to Python data types
dumps Dump Graph Transliterator configuration to JSON string
loads Load Graph Transliteration from configuration as a JSON string
static loads (settings, **kwargs)
Create GraphTransliterator from JavaScript Object Notation (JSON) string.
Parameters settings — JSON settings for GraphTransliterator
Returns Graph Transliterator

Return type GraphTransliterator

60 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

123

124

125

126

Example

JSON_settings = '''{"tokens": {"a": ["vowel"], " ": ["wb"]}, "rules": [{
—"production”": "A", "prev_classes": null, "prev_tokens": null, "tokens": ["a
—"], "next_classes": null, "next_tokens": null, "cost": 0.5849625007211562},
—{"production": " ", "prev_classes": null, "prev_tokens": null, "tokens": ["
—"], "next_classes": null, "next_tokens": null, "cost": 0.5849625007211562}],
— "whitespace": {"default": " ", "token_class": "wb", "consolidate": false},
—"onmatch_rules": [{"prev_classes": ["vowel"], "next_classes": ["vowel"],
—"production": ","}], "metadata": {"author": "Author McAuthorson"}, "ignore_
—errors": false, "onmatch_rules_lookup": {"a": {"a": [0]}}, "tokens_by_class
—": {"vowel": ["a"], "wb": [" "]}, "graph": {"node": [{"type": "Start",
—"ordered_children": {"a": [1], " ": [31}}, {"type": "token", "token": "a",
—"ordered_children": {"__rules__": [2]}}, {"type": "rule", "rule_key": O,
—"accepting": true, "ordered_children": {}}, {"type": "token", "token": " ",
—"ordered_children": {"__rules_ ": [4]}}, {"type": "rule", "rule_key": 1,
—"accepting": true, "ordered_children": {}}], "edge": {"O0": {"1": {"token":
—"a", "cost": 0.5849625007211562}, "3": {"token": " ", "cost": 0.
—5849625007211562}}, "1": {"2": {"cost": 0.5849625007211562%}}, "3": {"4": {
—"cost": 0.5849625007211562}}}, "edge_list": [[O, 211, [1, 2], [0, 31, I[3,-
—~4]11}, "tokenizer_pattern": "(al)", "graphtransliterator_version": "1.2.2"}'
;}l Al

gt = GraphTransliterator.loads (JSON_settings)

gt.transliterate('a')

A

See also:

dump Dump Graph Transliterator configuration to Python data types

dumps Dump Graph Transliterator configuration to JSON string

load Load Graph Transliteration from configuration in Python data types

match_at (foken_i, tokens, match_all=False)
Match best (least costly) transliteration rule at a given index in the input tokens and return the index to that
rule. Optionally, return all rules that match.

Parameters

* token_i (inf) — Location in fokens at which to begin

¢ tokens (list of str) — List of tokens

* match_all (bool, optional) — If true, return the index of all rules matching at the given

index. The default is false.

Returns Index of matching transliteration rule in GraphTransliterator. rules or None.
Returns a list of int or an empty list if match_all is true.

Return type int, None, or list of int

Note: Expects whitespaces token at beginning and end of fokens.

3.2. Citation

61

Graph Transliterator Documentation, Release 1.2.2

Examples

127

gt GraphTransliterator.from_yaml ('"''

128 tokens:
129
130
131
rules:

a:

132
<A>
a a: <AA>
whitespace:
default: ' '
consolidate:
token_class:

133
134
135
136
True
wb

137
138
LI))

tokens gt.tokenize ("aa")

tokens # whitespace added to ends

139

140

141

’[l l’ lal, lal, 1 v]

’gt.match_at(l, tokens) # returns index

to rule

E

’gt.rules[gt.match_at(l, tokens)] # actual rule

TransliterationRule (production="'<AA>"',
—tokens=["'a', 'a'], next_tokens=None,
—4150374992788437)

prev_classes=None,
next_classes=None,

prev_tokens=None, ..
cost=0.

’gt.match_at(l, tokens, match_all=True) # index to rules, with match_all

][o, 1]

’[gt.rules[_] for _ in gt.match_at (1, tokens, match_all=True)]

[TransliterationRule (production="'<AA>",
—tokens=["'a', 'a'l,
—4150374992788437),
TransliterationRule (production="'<A>",
—tokens=["'a'],

next_tokens=None,

next_tokens=None,

next_classes=None,

prev_classes=None,
next_classes=None,

prev_classes=None,

cost=

prev_tokens=None, ..
cost=0.

prev_tokens=None, ..
0.5849625007211562) 1]

property metadata
Metadata of transliterator

Type dict

property onmatch_rules
Rules for productions between matches.

Type list of OnMatchRules

property onmatch_rules_lookup
On Match Rules lookup

Type dict

62

Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

property productions
List of productions of each transliteration rule.

Type list of str

pruned_of (productions)
Remove transliteration rules with specific output productions.

Parameters productions (str, or list of str) — list of productions to remove
Returns Graph transliterator pruned of certain productions.

Return type graphtransliterator.GraphTransliterator

Note: Uses original initialization parameters to construct a new GraphTransliterator.

Examples
us | gt = GraphTransliterator.from_yaml('"'
147 tokens:
148 a: []
149 a a: []
150 't [wb]
151 rules:
152 a: <A>
153 a a: <AA>
154 whitespace:
155 default: ' '
156 consolidate: True
157 token_class: wb

158 UL

159 |gt.rules

—~tokens=["'a', 'a'], next_tokens=None, next_classes=None, cost=0.
—4150374992788437),

[TransliterationRule (production='<AA>"', prev_classes=None, prev_tokens=None, .

TransliterationRule (production='<A>', prev_classes=None, prev_tokens=None, .
—tokens=["'a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

160 ’gt.pruned_of(’<AA>').rules

|

[TransliterationRule (production="'<A>', prev_classes=None, prev_tokens=None, .
—tokens=["'a'], next_tokens=None, next_classes=None, cost=0.5849625007211562)]

161 ’gt.pruned_of(['<A>’, '<AA>']) .rules

|

’[]

|

property rules
Transliteration rules sorted by cost.

Type list of TransliterationRule

tokenize (input)
Tokenizes an input string.

3.2. Citation

Graph Transliterator Documentation, Release 1.2.2

162

163

164

165

166

167

Adds initial and trailing whitespace, which can be consolidated.
Parameters input (st r)— String to tokenize
Returns List of tokens, with default whitespace token at beginning and end.
Return type list of str

Raises ValueError — Unrecognizable input, such as a character that is not in a token

Examples

tokens = {'ab': ['class_ab'], " ': ['wb']l}

whitespace = {'default': ' ', 'token_class': 'wb', 'consolidate': True}
rules = {'ab': 'AB', ' ': '_'}

settings = {'tokens': tokens, 'rules': rules, 'whitespace': whitespace}
gt = GraphTransliterator.from_easyreading_dict (settings)

gt.tokenize('ab ")

property tokenizer_pattern

Tokenizer pattern from transliterator

Type str

property tokens

Mappings of tokens to their classes.
Type dict of {str
Type set of str}

property tokens_by_class

Tokenizer pattern from transliterator
Type dict of {str
Type list of str}

transliterate (input)

Transliterate an input string into an output string.
Parameters input (str) — Input string to transliterate
Returns Transliteration output string
Return type s

Raises ValueError — Cannot parse input

Note: Whitespace will be temporarily appended to start and end of input string.

64

Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Graph Transliterator Documentation, Release 1.2.2

Example

168 | GraphTransliterator.from_yaml (
169 rrir
1m0 | tokens:

171 a: []

172 "' [wb]
113 | rules:

174 a: A

175 R

176 | whitespace:

177 default: " '

178 consolidate: True

179 token_class: wb

180 """y .transliterate("a a")
'A Al

property whitespace
Whitespace rules.

Type WhiteSpaceRules

class graphtransliterator.CoverageTransliterator (*args, **kwargs)
Subclass of GraphTransliterator that logs visits to graph and on_match rules.

Used to confirm that tests cover the entire graph and onmatch_rules.

check_coverage (raise_exception=True)
Check coverage of graph and onmatch rules.

First checks graph coverage, then checks onmatch rules.

check_onmatchrules_coverage (raise_exception=True)
Check coverage of onmatch rules.

clear_visited()
Clear visited flags from graph and onmatch_rules.

Bundled Transliterators

graphtransliterator.transliterators

Bundled transliterators are loaded by explicitly importing graphtransliterator.transliterators. Eachis
an instance of graphtransliterator.bundled.Bundled.

class graphtransliterator.transliterators.Bundled (*args, **kwargs)
Subclass of GraphTransliterator used for bundled Graph Transliterator.

property directory
Directory of bundled transliterator, used to load settings.

from_JSON (check_ambiguity=False, coverage=False, **kwargs)
Initialize from bundled JSON file (best for speed).

Parameters
e check_ambiguity (bool,) — Should ambiguity be checked. Default is False.

¢ coverage (bool) — Should test coverage be checked. Default is False.

3.2. Citation 65

Graph Transliterator Documentation, Release 1.2.2

from_YAML (check_ambiguity=True, coverage=True, **kwargs)
Initialize from bundled YAML file (best for development).

Parameters
¢ check_ambiguity (bool,) — Should ambiguity be checked. Default is True.
* coverage (bool) — Should test coverage be checked. Default is True.

generate_yaml_tests (file=None)
Generates YAML tests with complete coverage.

Uses the first token in a class as a sample. Assumes for onmatch rules that the first sample token in a class
has a unique production, which may not be the case. These should be checked and edited.

load_yaml_tests ()
Iterator for YAML tests.

Assumes tests are found in subdirectory fests of module with name NAME_tests.yaml, e.g.
‘source_to_target/tests/source_to_target_tests.yaml.

property name
Name of bundled transliterator, e.g. ‘Example’

classmethod new (method="json', **kwargs)
Return a new class instance from method (json/yaml).

Parameters method (str (json or yaml)) — How to load bundled transliterator, JSON or YAML.

run_tests (transliteration_tests)
Run transliteration tests.

Parameters transliteration_tests (dict of {str:str}) — Dictionary of test from source ->
correct target.

run_yaml_tests ()
Run YAML tests in MODULE/tests/MODULE_tests.yaml

property yaml_tests_filen
Metadata of transliterator

Type dict

class graphtransliterator.transliterators.Example (**kwargs)
Example Bundled Graph Transliterator.

class graphtransliterator.transliterators.ITRANSDevanagariToUnicode (**kwargs)
ITRANS Devanagari to Unicode Transliterator.

class graphtransliterator.transliterators.MetadataSchema (% only:
Optional[Union[Sequence[str],
Set[str]]] = None, exclude:
Union[Sequence[str], Set[str]] =
(), many: bool = False, context:
Optional[Dict] = None,
load_only: Union[Sequence(str],
Set[str]] = (), dump_only:
Union[Sequence[str], Set[str]] =
(), partial: Union[bool,
Sequencelstr], Set[str]] = False,
unknown: Optional[str] =
None)

Schema for Bundled metadata.

66 Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Graph Transliterator Documentation, Release 1.2.2

graphtransliterator.transliterators.iter_names ()
Iterate through bundled transliterator names.

graphtransliterator.transliterators.iter_transliterators (**kwds)
Iterate through instances of bundled transliterators.

Graph Classes

class graphtransliterator.DirectedGraph (node=None, edge=None, edge_list=None)
A very basic dictionary- and list-based directed graph. Nodes are a list of dictionaries of node data. Edges are
nested dictionaries keyed from the head -> tail -> edge properties. An edge list is maintained. Can be exported as
a dictionary.

node
List of node data

Type list of dict

edge
Mapping from head to tail of edge, holding edge data

Type dict of {int: dict of {int: dict}}

edge_1list
List of head and tail of each edge

Type list of tuple of (int, int)

Examples

151 | from graphtransliterator import DirectedGraph
152 |DirectedGraph ()

<graphtransliterator.graphs.DirectedGraph at 0x7££8d83354b0>

add_edge (head, tail, edge_data=None)
Add an edge to a graph and return its attributes as dict.

Parameters

¢ head (inf) — Index of head of edge

e tail (inf) — Index of tail of edge

* edge_data (dict, default { }) — Edge data
Returns Data of created edge
Return type dict

Raises ValueError —Invalid head or tail, or edge_data is not a dict.

3.2. Citation 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

Graph Transliterator Documentation, Release 1.2.2

Examples

183 |g = DirectedGraph ()
184 | g.add_node ()

’ (0, {hH

185 ’g.add_node()

’(1, {1

186 ’g.add_edge(o,i, {'data_key_1"': 'some edge data here'})
’{'data_key_l': 'some edge data here'}

187 ’g.edge
’{O: {1: {'data_key_1': 'some edge data here'}}}

add_node (node_data=None)
Create node and return (int, dict) of node key and object.

Parameters node_data (dict, default {}) — Data to be stored in created node
Returns Index of created node and its data
Return type tuple of (int, dict)

Raises ValueError —node_dataisnotadict

Examples

188 |g = DirectedGraph ()
1899 | g.add_node ()

’(O, {H
190 ’g.add_node({'datakeyl': 'data value'})
’ (1, {'datakeyl': 'data value'})

191 ’g.node

’[{}, {'datakeyl': 'data value'}]

class graphtransliterator.VisitLoggingDirectedGraph (graph)
A DirectedGraph that logs visits to all nodes and edges.

Used to measure the coverage of tests for bundled transliterators.

check_coverage (raise_exception=True)
Checks that all nodes and edges are visited.

68 Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/exceptions.html#ValueError

Graph Transliterator Documentation, Release 1.2.2

Parameters raise_exception (bool, default) — Raise IncompleteGraphCoverageException
(default, True)

Raises IncompleteGraphCoverageException — Not all nodes/edges of a graph have
been visited.

clear_visited()
Clear all visited attributes on nodes and edges.

Rule Classes

class graphtransliterator.TransliterationRule (production, prev_classes, prev_tokens, tokens,
next_tokens, next_classes, cost)
A transliteration rule containing the specific match conditions and string output to be produced, as well as the rule’s
cost.

production
Output produced on match of rule

Type str

prev_classes
List of previous token classes to be matched before tokens or, if they exist, prev_tokens

Type list of str, or None

prev_tokens
List of tokens to be matched before rokens

Type list of str, or None

tokens
List of tokens to match

Type list of str

next_tokens
List of tokens to match after tokens

Type list of str, or None

next_classes
List of tokens to match after tokens or, if they exist, next_tokens

Type list of str, or None

cost
Cost of the rule, where less specific rules are more costly

Type float

class graphtransliterator.OnMatchRule (prev_classes, next_classes, production)
Rules about adding text between certain combinations of matched rules.

When a translation rule has been found and before its production is added to the output, the productions string of
an OnMatch rule is added if previously matched tokens and current tokens are of the specified classes.

prev_classes
List of previously matched token classes required

Type list of str

next_classes
List of current and following token classes required

3.2. Citation 69

Graph Transliterator Documentation, Release 1.2.2

Type list of str

production
String to added before current rule

Type str

class graphtransliterator.WhitespaceRules (default, token_class, consolidate)
Whitespace rules of GraphTransliterator.

default
Default whitespace token

Type str

token_class
Whitespace token class

Type str

consolidate
Consolidate consecutive whitespace tokens and render as a single instance of the specified default whitespace

token.

Type bool

Exceptions

exception graphtransliterator.GraphTransliteratorException
Base exception class. All Graph Transliterator-specific exceptions should subclass this class.

exception graphtransliterator.AmbiguousTransliterationRulesException
Raised when multiple transliteration rules can match the same pattern. Details of ambiguities are given in a
logging.warning ().

exception graphtransliterator.NoMatchingTransliterationRuleException
Raised when no transliteration rule can be matched at a particular location in the input string’s tokens. Details of
the location are given in a logging.warning ().

exception graphtransliterator.UnrecognizableInputTokenException
Raised when a character in the input string does not correspond to any tokens in the GraphTransliterator’s token
settings. Details of the location are givenina logging.warning ().

Schemas

class graphtransliterator.DirectedGraphSchema (*, only: Optional[Union[Sequence[str], Set[str]]]
= None, exclude: Union[Sequence[str], Set[str]]
= (), many: bool = False, context: Optional[Dict]
= None, load_only: Union[Sequence[str],
Set[str]] = (), dump_only: Union[Sequence[str],
Set[str]] = (), partial: Union[bool, Sequencelstr],
Setstr]] = False, unknown: Optional[str] =
None)

Schema for DirectedGraph.

Validates graph somewhat rigorously.

70 Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/logging.html#logging.warning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Graph Transliterator Documentation, Release 1.2.2

class graphtransliterator.EasyReadingSettingsSchema (*, only: Optional[Union[Sequence/str],
Set[str]]] = None, exclude:
Union[Sequence[str], Set[str]] = (),
many: bool = False, context:
Optional[Dict] = None, load_only:
Union[Sequence(str], Set{str]] = (),
dump_only: Union[Sequence/str],
Set[str]] = (), partial: Union[bool,
Sequence(str], Set[str]] = False,
unknown: Optional(str] = None)

Schema for easy reading settings.

Provides initial validation based on easy reading format.

class graphtransliterator.GraphTransliteratorSchema (*, only: Optional[Union[Sequence[str],
Set[str]]] = None, exclude:
Union[Sequence(str], Set{str]] = (),
many: bool = False, context:
Optional[Dict] = None, load_only:
Union[Sequence[str], Set[str]] = (),
dump_only: Union[Sequence(str],
Set[str]] = (), partial: Union[bool,
Sequencelstr], Set[str]] = False,
unknown: Optional(str] = None)

Schema for Graph Transliterator.

class graphtransliterator.OnMatchRuleSchema (*, only: Optional[Union[Sequence[str], Set[str]]] =
None, exclude: Union[Sequence(str], Set[str]] = (),
many: bool = False, context: Optional[Dict] = None,
load_only: Union[Sequencel[str], Set[str]] = (),
dump_only: Union[Sequence([str], Set[str]] = (),
partial: Union[bool, Sequence[str], Set[str]] = False,
unknown: Optional[str] = None)

Schema for OnMatchRule.

class graphtransliterator.SettingsSchema (*, only: Optionall Union[Sequence[str], Set[str]]] =
None, exclude: Union[Sequence(str], Set[str]] = (),
many: bool = False, context: Optional[Dict] = None,
load_only: Union[Sequencel[str], Set[str]] = (),
dump_only: Union[Sequence[str], Set[str]] = (), partial:
Union[bool, Sequence[str], Set[str]] = False, unknown:
Optional(str] = None)

Schema for settings in dictionary format.

Performs validation.

class graphtransliterator.TransliterationRuleSchema (*, only: Optional{ Union[Sequence/str],
Set[str]]] = None, exclude:
Union[Sequence[str], Set[str]] = (),
many: bool = False, context:
Optional[Dict] = None, load_only:
Union[Sequence(str], Set[str]] = (),
dump_only: Union[Sequence/str],
Set[str]] = (), partial: Union[bool,
Sequence(str], Set[str]] = False,
unknown: Optional[str] = None)

Schema for TransliterationRule.

3.2. Citation 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Graph Transliterator Documentation, Release 1.2.2

class graphtransliterator.WhitespaceDictSettingsSchema (*, only:
Optional[Union[Sequence(str],
Set[str]]] = None, exclude:
Union[Sequence[str], Set[str]] = (),
many: bool = False, context:
Optional[Dict] = None, load_only:
Union[Sequence(str], Set[str]] = (),
dump_only: Union[Sequence/str],
Set[str]] = (), partial: Union[bool,
Sequencelstr], Set[str]] = False,
unknown: Optional[str] = None)

Schema for Whitespace definition as a dict.

class graphtransliterator.WhitespaceSettingsSchema (*, only: Optional[Union[Sequence(str],
Set[str]]] = None, exclude:
Union[Sequence[str], Set[str]] = (),
many: bool = False, context:
Optional[Dict] = None, load_only:
Union[Sequence[str], Set[str]] = (),
dump_only: Union[Sequencelstr],
Set[str]] = (), partial: Union[bool,
Sequencel(str], Set[str]] = False,
unknown: Optional[str] = None)

Schema for Whitespace definition that loads as WhitespaceRules.

3.2.9 Credits

Development Lead

e A. Sean Pue @seanpue <pue@msu.edu>

Contributors

¢ Valentino Constantinou @vc1492a

¢ Rebecca Sutton Koeser @rlskoeser

3.2.10 Acknowledgements

Software development was supported by an Andrew W. Mellon Foundation New Directions Fellowship (Grant Number
11600613) and by matching funds provided by the College of Arts and Letters, Michigan State University.

72 Chapter 3. Sample Code and Graph

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/seanpue
mailto:pue@msu.edu
https://github.com/vc1492a
https://github.com/rlskoeser

Graph Transliterator Documentation, Release 1.2.2

3.2.11 Kudos

Graph Transliterator’s developers acknowledge the following open-access projects, which have been particularly helpful
in Graph Transliterator’s development. These include: astropy (guide for documentation style expanding on numpy),
click (command line interface), contributor_covenant (basis for the code of conduct), cookiecutter-pypackage (initial
Python module template), jupyter-sphinx (renderer of live code results in the docs), and marshmallow (object serial-
izer/deserializer).

Those from which code/text has been adopted are mentioned in NOTICE.

[~ Dependencies scanned by PyUp.io ~]

3.2.12 History

[Unreleased - Maybe]

save match location in tokenize using token_details

allow insertion of transliteration error messages into output

fix Devanagari output in Sphinx-generated Latex PDF

add translated messages

add precommit to run black

add static typing with mypy

adjust IncorrectVersionException to only consider major, minor versioning not patch

Adjust CSS for CLI output in docs

[To do]

Add on/off switch characters

1.2.2 (2021-08-11)

updated CONTRIBUTING.rst for new Python versions
added github actions to publish to pypi and testpypi
shifted to github CI

updated dependencies

fixed tox.ini

updated schema.py error message

updated docs/conf.py for jupyter_sphinx

3.2. Citation

73

https://docs.astropy.org/en/stable/development/docrules.html
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://github.com/pallets/click
https://contributor-covenant.org
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/jupyter/jupyter-sphinx
https://github.com/marshmallow-code/marshmallow
https://github.com/seanpue/graphtransliterator/blob/master/NOTICE

Graph Transliterator Documentation, Release 1.2.2

1.2.1 (2020-10-29)

 updated docs/conf.py for jupyter_sphinx

1.2.0 (2020-05-13)

* changes to bundled.py and cli.py with dump-tests command

* updated cli.rst

1.1.2 (2020-04-29)

¢ updated LICENSE, minor code updates, security updates

1.1.1 (2020-04-21)

* Added test to check compressed dump is uniform
* Fixed sorting of class id in compressed dump to make JSON output uniform

* Added Python 3.8 support

1.1.0 (2020-01-10)

Added pre-commit hook to rebuild bundled transliterators with bumpZ2version

remove to_dict from DirectedGraph, since it is handled through Marshmallow schemas.

Adjust documentation to mention compression.

added list-bundled CLI command

added —regex/-re flag to graphtransliterator make-json CLI command to allow regular expressions

removed coverage keyword from GraphTransliterator

reorganized core.py

converted from_dict, from_easyreading_dict, from_yaml, and from_yaml_file to static methods from class methods
moved ambiguity-checking functions to ambiguity.py and tests to test_ambiguity.py

set three levels of compression: 0 (Human-readable), 1 (no data loss, includes graph), 2 (no data loss, and no graph);
2 is fastest and set to default.

set check_ambiguity to read keyword during JSON load

allowed empty string productions during JSON compression

added compression.py with decompress_config() and compress_config() to compress JSON
added tests/test_compression.py to test compression.py

added sorting of edge_list to DirectedGraph to allow dumped JSON comparison in tests

adjusted _tokenizer_string_from() to sort by length then string for JSON comparison

74

Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

1.0.7 (2019-12-22)

¢ added IncorrectVersionException, if serialized version being loaded is from a later version than the current graph-
transliterator version

¢ added automatic edge_list creation if edge parameter in DirectedGraph
¢ added fields to and started using NodeDataSchema

¢ added pre_dump to GraphTransliteratorSchema, NodeDataSchema to remove empty values to compress Serializa-
tion

¢ removed rule from graph leaves and updated docs accordingly

1.0.6 (2019-12-15)

* fixed serialization of graph node indexes as integer rather than strings

1.0.5 (2019-12-14)

¢ added JOSS citation to README
¢ added —version to cli
* removed some asserts

 removed rule dictionaries from graph leaves to compress and simplify serialization

1.0.4 (2019-11-30)

 updates to docs

1.0.3 (2019-11-30)

* update to paper

1.0.2 (2019-11-30)

* updates for Zenodo

1.0.1 (2019-11-29)

* updated requirements_dev.txt

3.2. Citation 75

Graph Transliterator Documentation, Release 1.2.2

1.0.0 (2019-11-26)

» removed extraneous files
 updated development status in setup.py

* set to current jupyter-sphinx

0.4.10 (2019-11-04)

* fixed typo in requirements_dev.txt

0.4.9 (2019-11-04)

* quick fix to requirements_dev.txt due to readthedocs problem with not reading changes

0.4.8 (2019-11-04)

* twine update to 2.0

0.4.7 (2019-11-04)

 temp switch back to dev version of jupyter-sphinx for overflow error

* Dropped Python 3.5 support for twine 2.0 update

0.4.6 (2019-11-04)

* switched to latest jupyter-sphinx

e travis adjustments

0.4.5 (2019-10-31)

* Adjusted make-json CLI test to restore original example.json

0.4.4 (2019-10-24)

* moved README.rst to include in index.rst

e fixed error in advanced_tutorial.rst

76 Chapter 3

. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

0.4.3 (2019-10-24)

fixed requirements_dev.txt

0.4.2 (2019-10-24)

fixed README.rst for PyPI

0.4.1 (2019-10-24)

fixed links to code in docs
fixed link to NOTICE

added acknowledgements

0.4.0 (2019-10-24)

added bundled transliterators to api.rst

adjustments to usage.rst

adjustments to tutorial.rst

fixes to docs (linking module)

adjustments to advanced_tutorial.rst

adjustments to README.rst

fixes to AUTHORS.rst

added kudos.rst to docs to acknowledge inspirational projects

added advanced tutorial on bundling a transliterator.

added cli.rst to docs

fixed regex in get_unicode_char to allow hyphen

added cli.py and adjusted setup.py

updated tutorial

added statement of need to README. Thanks @rlskoeser.

Removed continue-linenos jupyter-sphinx directive in favor of configuration settings
added preface to documentation source files with links to production version, etc. Thanks @rlskoeser.
added custom css for jupyter-sphinx cells

added jupyter-sphinx documentation with line numbering

removed pkg_resources as source for version due to problem with loading from pythonpath for jupyter-sphinx in
readthedocs, instead used __version___

adjust path in docs/conf.py to fix docs error
added bundled/schemas.py with MetadataSchema for bundled transliterator metadata
added coverage to from_dict()

added allow_none in onmatch_rules in GraphTransliteratorSchema

3.2. Citation 77

https://github.com/rlskoeser
https://github.com/rlskoeser

Graph Transliterator Documentation, Release 1.2.2

* adjusted core.py so that all edges are visited during search, even if no constraints
e removed _count_of_tokens() in favor of cost

* added IncompleteGraphCoverageException to exceptions.py

¢ added VisitLoggingDirectedGraph to graphs.py

* added tests/test_transliterator.py

e partially updated transliterators/README.rst

¢ removed transliterators/sample/*

¢ added yaml and json to package_data in setup.py

* Added to core.py class CoverageTransliterator, which tracks visits to edges, nodes, and onmatch rules, and allows
clearing of visits and checking of coverage, used to make sure tests are comprehensive

* created test/test_coverage.py to test CoverageTransliterator
* created transliterators/bundled.py with class Bundled for bundled transliterators

¢ added load_from_YAML() and load_from_JSON() initializers to Bundled to load from bundled YAML (for de-
velopment) and JSON (for speed)

¢ added load_yaml_tests(), run_yaml_tests(), and run_tests() to Bundled

* created transliterators/__init__.py that finds bundled transliterators in subdirectory and adds them to graphtranslit-
erators.transliterators namespace

* added iter_names() and iter_transliterators() to transliterators/__init__.py
* created test/test_transliterator.py to check bundled transliterator loading and functions
* created in transliterators/example/ __init__.py, example.json, example.yaml

* created in transliterators/example/tests test_example.py and example_tests.yaml

0.3.8 (2019-09-18)
* fixed load() docstring example
 updated check_ambiguity() to use cost
0.3.7 (2019-09-17)

* Adjusted docs to show readme as first page
* Added sample graph and code to README.rst

* moved images in docs to _static

78 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

0.3.6 (2019-09-17)

* adjusted installation.rst renaming libraries to modules

* updated paper and bibliography.

0.3.5 (2019-09-15)

* flake8 fix for core.py

* fixed bug in schemas.py whereby, during load(), DirectedGraphSchema() was modifying input settings
¢ added tests for modifications to settings by load()

¢ adjusted DirectedGraphSchema to allow for compacted transliteration rule settings

* adjusted GraphTransliteratorSchema to allow for compacted settings

¢ added tests to confirm all optional fields passed to load() are really optional

¢ added ValidationError if onmatch_rules_lookup present without onmatch_rules

¢ adjusted DirectedGraphSchema edge definition to remove str if loading from JSON

* added more rigorous schema definitions for edge_list and node in DirectedGraphSchema
* fixed flake8 warning in graphs.py

¢ adjusted docstrings in core.py for dump(), dumps(), load(), and loads()

0.3.4 (2019-09-15)

¢ added sphinx-issues and settings to requirements_dev.txt, docs/conf.py

¢ added .readthedocs.yml configuration file to accommodate sphinx-issues

» removed history from setup.py due to sphinx-issues

* fixed GraphTransliteratorException import in __init__.py

* added docs/_static directory

* fixed emphasis error and duplicate object description in docs/usages.rst

* fixed docstring in core.py

¢ added python versions badge to README.rst (openjournals/joss-reviews#1717). Thanks @vc1492a.
* added NOTICE listing licenses of open-source text and code

* added Dependencies information to docs/install.rst (openjournals/joss-reviews#1717). Thanks @vc1492a.
¢ updated AUTHORS.rst

* minor updates to README.rst

3.2. Citation 79

https://github.com/openjournals/joss-reviews/issues/1717
https://github.com/vc1492a
https://github.com/openjournals/joss-reviews/issues/1717
https://github.com/vc1492a

Graph Transliterator Documentation, Release 1.2.2

0.3.3 (2019-09-14)

* fixed missing marshmallow dependency (#47). Thanks @vc1492a.
¢ removed unused code from test (#47). Thanks @vc1492a.

» removed cerberus dependency

0.3.2 (2019-08-30)

* fixed error in README .rst

0.3.1 (2019-08-29)

adjustments to README.rst

cleanup in initialize.py and core.py

fix to docs/api.rst

adjusted setup.cfg for bumpversion of core.py
adjusted requirements.txt

removed note about namedtuple in dump docs

adjusted docs (api.rst, etc.)

0.3.0 (2019-08-23)

Removed _tokens_of() from init

Removed serialize()

Added load() to GraphTransliterator, without ambiguity checking

Added dump() and dumps() to GraphTransliterator to export configuration

renamed _tokenizer_from() to _tokenizer_pattern_from(), and so that regex is compiled on load and passed as
pattern string (tokenizer_pattern)

added settings parameters to DirectedGraph

added OnMatchRule as namedtuple for consistency

added new GraphTransliterator.from_dict(), which validates from_yaml()

renamed GraphTransliterator.from_dict() to GraphTransliterator.from_easyreading_dict()
added schemas.py

removed validate.py

removed cerberus and added marshmallow to validate.py

adjusted tests

Removed check_settings parameter

80

Chapter 3. Sample Code and Graph

https://github.com/seanpue/graphtransliterator/pull/47
https://github.com/vc1492a
https://github.com/seanpue/graphtransliterator/pull/47
https://github.com/vc1492a

Graph Transliterator Documentation, Release 1.2.2

0.2.14 (2019-08-15)

e minor code cleanup

» removed yaml from validate.py

0.2.13 (2019-08-03)

* changed setup.cfg for double quotes in bumpversion due to Black formatting of setup.py

¢ added version test

0.2.12 (2019-08-03)

* fixed version error in setup.py

0.2.11 (2019-08-03)

e travis issue

0.2.10 (2019-08-03)

* fixed test for version not working on travis

0.2.9 (2019-08-03)

* Used Black code formatter

¢ Adjusted tox.ini, contributing.rst

* Set development status to Beta in setup.py
¢ Added black badge to README.rst

* Fixed comments and minor changes in initialize.py

0.2.8 (2019-07-30)

* Fixed ambiguity check if no rules present

* Updates to README.rst

0.2.7 (2019-07-28)

* Modified docs/conf.py

* Modified equation in docs/usage.rst and paper/paper.md to fix doc build

3.2. Citation 81

Graph Transliterator Documentation, Release 1.2.2

0.2.6 (2019-07-28)

* Fixes to README.rst, usage.rst, paper.md, and tutorial.rst

» Modifications to core.py documentation

0.2.5 (2019-07-24)

* Fixes to HISTORY .rst and README.rst
* 100% test coverage.
¢ Added draft of paper.

* Added graphtransliterator_version to serialize().

0.2.4 (2019-07-23)

* minor changes to readme

0.2.3 (2019-07-23)

¢ added xenial to travis.yml

0.2.2 (2019-07-23)

e added CI

0.2.1 (2019-07-23)

* fixed HISTORY .rst for PyPI

0.2.0 (2019-07-23)

¢ Fixed module naming in docs using __module__.

* Converted DirectedGraph nodes to a list.

* Added Code of Conduct.

¢ Added GraphTransliterator class.

» Updated module dependencies.

¢ Added requirements.txt

* Added check_settings parameter to skip validating settings.

* Added tests for ambiguity and check_ambiguity parameter.

* Changed name to Graph Transliterator in docs.

* Created core.py, validate.py, process.py, rules.py, initialize.py, exceptions.py, graphs.py

* Added ignore_errors property and setter for transliteration exceptions (UnrecognizableInputToken, NoMatching-
TransliterationRule)

82 Chapter 3. Sample Code and Graph

Graph Transliterator Documentation, Release 1.2.2

¢ Added logging to graphtransliterator
* Added positive cost function based on number of matched tokens in rule
¢ added metadata field
¢ added documentation
0.1.1 (2019-05-30)
¢ Adjusted copyright in docs.
¢ Removed Python 2 support.

0.1.0 (2019-05-30)

* First release on PyPI.

3.3 Indices and tables

* genindex
* modindex

e search

3.3. Indices and tables 83

Graph Transliterator Documentation, Release 1.2.2

84 Chapter 3. Sample Code and Graph

PYTHON MODULE INDEX

g

graphtransliterator, 52
graphtransliterator.transliterators, 65

85

Graph Transliterator Documentation, Release 1.2.2

86 Python Module Index

A

add_edge ()
method), 67

add_node ()
method), 68

AmbiguousTransliterationRulesException,

70

(graphtransliterator. DirectedGraph

(graphtransliterator. DirectedGraph

B

Bundled (class in graphtransliterator.transliterators), 65

C

check_coverage () (graphtranslitera-
tor.CoverageTransliterator method), 65

check_coverage () (graphtranslitera-
tor. VisitLoggingDirectedGraph method), 68

check_onmatchrules_coverage () (graph-
transliterator.CoverageTransliterator ~ method),
65

clear_visited() (graphtranslitera-
tor.CoverageTransliterator method), 65

clear_visited() (graphtranslitera-

tor. VisitLogging DirectedGraph method), 69
consolidate (graphtransliterator. WhitespaceRules at-
tribute), 70
cost (graphtransliterator. TransliterationRule attribute), 69
CoverageTransliterator (class in graphtransliter-
ator), 65

D

default (graphtransliterator. WhitespaceRules attribute),
70

DirectedGraph (class in graphtransliterator), 67

DirectedGraphSchema (class in graphtransliterator),
70

directory (graphtransliterator.transliterators. Bundled
property), 65

dump () (graphtransliterator. GraphTransliterator
method), 53

dumps () (graphtransliterator. GraphTransliterator
method), 55

INDEX

E

EasyReadingSettingsSchema (class in graph-
transliterator), 70

edge (graphtransliterator. DirectedGraph attribute), 67

edge_list (graphtransliterator. DirectedGraph
tribute), 67

Example (class in graphtransliterator.transliterators), 66

F

from_dict () (graphtransliterator.GraphTransliterator
static method), 56

from_easyreading_dict () (graphtranslitera-
tor.GraphTransliterator static method), 56

from_JSON () (graphtranslitera-
tor.transliterators. Bundled method), 65

from_yaml () (graphtransliterator.GraphTransliterator
static method), 57

at-

from_YAML () (graphtranslitera-
tor.transliterators. Bundled method), 65
from_yaml_file() (graphtranslitera-

tor.GraphTransliterator static method), 58

G

generate_yaml_tests () (graphtranslitera-
tor.transliterators. Bundled method), 66
graph (graphtransliterator. GraphTransliterator property),
58
graphtransliterator
module, 52
GraphTransliterator (class in graphtransliterator),
52
graphtransliterator.transliterators
module, 65
graphtransliterator_version (graphtransliter-
ator.GraphTransliterator property), 58
GraphTransliteratorException, 70
GraphTransliteratorSchema (class in graph-
transliterator), 71

ignore_errors (graphtranslitera-
tor.GraphTransliterator property), 58

87

Graph Transliterator Documentation, Release 1.2.2

iter_names () (in module graphtranslitera-
tor.transliterators), 66

iter_transliterators () (in module graphtranslit-
erator.transliterators), 67

ITRANSDevanagariToUnicode (class in graph-

transliterator.transliterators), 66

L

last_input_tokens (graphtranslitera-
tor.GraphTransliterator property), 58

last_matched_rule_tokens (graphtranslitera-
tor.GraphTransliterator property), 59

last_matched_rules (graphtranslitera-

tor.GraphTransliterator property), 59

(graphtransliterator.GraphTransliterator ~ static

method), 59

load_yaml_tests () (graphtranslitera-
tor.transliterators. Bundled method), 66

load()

loads () (graphtransliterator.GraphTransliterator static
method), 60
M
match_at () (graphtransliterator. GraphTransliterator
method), 61
metadata (graphtransliterator. GraphTransliterator prop-
erty), 62
MetadataSchema (class in graphtranslitera-
tor.transliterators), 66
module
graphtransliterator, 52
graphtranslitera-

tor.transliterators, 65

N

name (graphtransliterator.transliterators.Bundled — prop-

erty), 66

new () (graphtransliterator.transliterators. Bundled class
method), 66

next_classes (graphtransliterator.OnMatchRule at-
tribute), 69

next_classes (graphtransliterator. TransliterationRule
attribute), 69

next_tokens (graphtransliterator. TransliterationRule

attribute), 69
node (graphtransliterator. DirectedGraph attribute), 67

NoMatchingTransliterationRuleException,
70

O

onmatch_rules (graphtranslitera-
tor.GraphTransliterator property), 62

onmatch_rules_lookup (graphtranslitera-
tor.GraphTransliterator property), 62

OnMatchRule (class in graphtransliterator), 69

OnMatchRuleSchema (class in graphtransliterator), 71

P

prev_classes (graphtransliterator.OnMatchRule at-
tribute), 69

prev_classes (graphtransliterator. TransliterationRule
attribute), 69

prev_tokens (graphtransliterator. TransliterationRule
attribute), 69

production (graphtransliterator.OnMatchRule at-
tribute), 70

production (graphtransliterator. TransliterationRule at-
tribute), 69

productions (graphtransliterator.GraphTransliterator
property), 62

pruned_of () (graphtransliterator.GraphTransliterator
method), 63

R

rules (graphtransliterator.GraphTransliterator property),
63

run_tests () (graphtranslitera-
tor.transliterators. Bundled method), 66

run_yaml_tests () (graphtranslitera-
tor.transliterators. Bundled method), 66

S

SettingsSchema (class in graphtransliterator), 71

T

token_class (graphtransliterator. WhitespaceRules at-
tribute), 70

tokenize () (graphtransliterator.GraphTransliterator
method), 63

tokenizer_pattern (graphtranslitera-
tor.GraphTransliterator property), 64

tokens (graphtransliterator.GraphTransliterator prop-
erty), 64

tokens (graphtransliterator. TransliterationRule attribute),
69

tokens_by_class (graphtranslitera-
tor.GraphTransliterator property), 64

transliterate () (graphtranslitera-
tor.GraphTransliterator method), 64

TransliterationRule (class in graphtransliterator),
69

TransliterationRuleSchema (class in graph-
transliterator), 71

u

UnrecognizableInputTokenException, 70

88

Index

Graph Transliterator Documentation, Release 1.2.2

Vv

VisitLoggingDirectedGraph (class in graph-
transliterator), 68

W

whitespace (graphtransliterator.GraphTransliterator
property), 65

WhitespaceDictSettingsSchema (class in graph-
transliterator), 71

WhitespaceRules (class in graphtransliterator), 70

WhitespaceSettingsSchema (class in graph-
transliterator), 72

Y

yaml_tests_filen (graphtranslitera-
tor.transliterators. Bundled property), 66

Index 89

	Transliteration… What? Why?
	Features
	Sample Code and Graph
	Get It Now
	Citation
	Installation
	Stable release
	From sources
	Required modules

	Usage
	Overview
	Configuration
	Initialization
	Input Tokens and Token Class Settings
	Transliteration Rules
	Match Settings
	Automatic Ordering of Transliteration Rules

	Whitespace Settings
	On Match Rules
	Metadata
	Unicode Support
	Configuring Directly
	Ambiguity Checking
	Setup Validation

	Transliteration and Its Exceptions
	Unrecognizable Input Token
	No Matching Transliteration Rule

	Additional Methods
	Serialization and Deserialization
	Matching at an Index
	Details of Matches
	Pruning of Rules

	Internal Graph
	DirectedGraph
	Nodes
	Edges
	Search and Preprocessing

	Bundled Transliterators
	Test Coverage of Bundled Transliterators
	Class Structure and Naming Conventions
	Metadata Requirements

	Command Line Interface
	Dump
	Dump Tests
	Generate Tests
	List Bundled Transliterators
	Make JSON of Bundled Transliterator(s)
	Test
	Transliterate

	Tutorial: Using GraphTransliterator
	Tutorial Overview
	Configuring
	Token Definitions
	Transliteration Rule Definitions
	On Match Rule Definitions
	Whitespace Definitions
	Metadata Definitions

	Creating a Transliterator
	Transliterating
	Other Information

	Advanced Tutorial: Bundling a Transliterator
	Git Basics: Fork, Branch, Sync, Commit
	Fork
	Branch
	Sync
	Commit

	Adding A Transliterator
	YAML File
	JSON File
	__init__.py
	Tests

	Testing the Transliterator
	Pushing Your Transliterator

	Contributing
	Contributor Code of Conduct
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback
	Add Transliterators

	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	API Reference
	Core Classes
	Bundled Transliterators
	graphtransliterator.transliterators

	Graph Classes
	Rule Classes
	Exceptions
	Schemas

	Credits
	Development Lead
	Contributors

	Acknowledgements
	Kudos
	History
	[Unreleased - Maybe]
	[To do]
	1.2.2 (2021-08-11)
	1.2.1 (2020-10-29)
	1.2.0 (2020-05-13)
	1.1.2 (2020-04-29)
	1.1.1 (2020-04-21)
	1.1.0 (2020-01-10)
	1.0.7 (2019-12-22)
	1.0.6 (2019-12-15)
	1.0.5 (2019-12-14)
	1.0.4 (2019-11-30)
	1.0.3 (2019-11-30)
	1.0.2 (2019-11-30)
	1.0.1 (2019-11-29)
	1.0.0 (2019-11-26)
	0.4.10 (2019-11-04)
	0.4.9 (2019-11-04)
	0.4.8 (2019-11-04)
	0.4.7 (2019-11-04)
	0.4.6 (2019-11-04)
	0.4.5 (2019-10-31)
	0.4.4 (2019-10-24)
	0.4.3 (2019-10-24)
	0.4.2 (2019-10-24)
	0.4.1 (2019-10-24)
	0.4.0 (2019-10-24)
	0.3.8 (2019-09-18)
	0.3.7 (2019-09-17)
	0.3.6 (2019-09-17)
	0.3.5 (2019-09-15)
	0.3.4 (2019-09-15)
	0.3.3 (2019-09-14)
	0.3.2 (2019-08-30)
	0.3.1 (2019-08-29)
	0.3.0 (2019-08-23)
	0.2.14 (2019-08-15)
	0.2.13 (2019-08-03)
	0.2.12 (2019-08-03)
	0.2.11 (2019-08-03)
	0.2.10 (2019-08-03)
	0.2.9 (2019-08-03)
	0.2.8 (2019-07-30)
	0.2.7 (2019-07-28)
	0.2.6 (2019-07-28)
	0.2.5 (2019-07-24)
	0.2.4 (2019-07-23)
	0.2.3 (2019-07-23)
	0.2.2 (2019-07-23)
	0.2.1 (2019-07-23)
	0.2.0 (2019-07-23)
	0.1.1 (2019-05-30)
	0.1.0 (2019-05-30)

	Indices and tables

	Python Module Index
	Index

